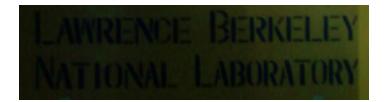

Summary


Zoltan Ligeti

Joint Workshop on V_{ub} and V_{cb} SLAC, Oct 29–31, 2009

Who needs another Summary

Zoltan Ligeti

Joint Workshop on V_{ub} and V_{cb} SLAC, Oct 29–31, 2009

Disclaimer

■ I once tried to use a shorthand for: BaBar + Belle ⇒ BABE

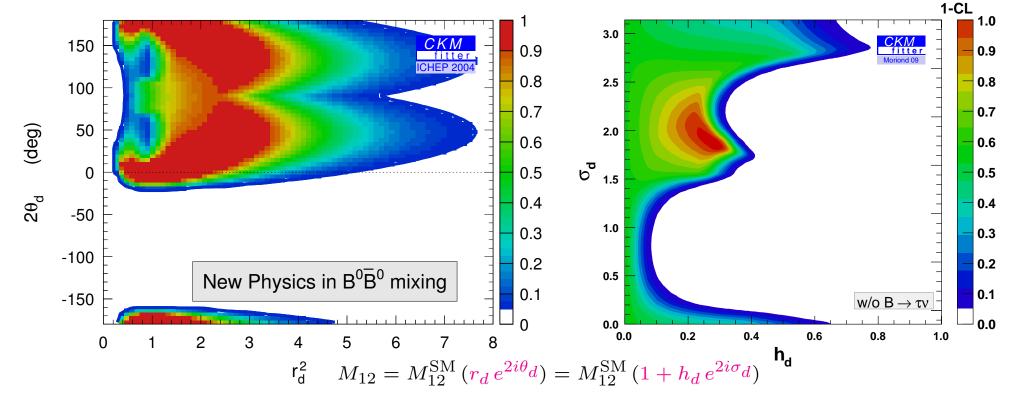
Disclaimer

I once tried to use a shorthand for: BaBar + Belle ⇒ BABE

Failed miserably... I do not really expect it to catch on now...

Disclaimer

I once tried to use a shorthand for: BaBar + Belle ⇒ BABE


Failed miserably... I do not really expect it to catch on now...

The "LEP experiments", "Tevatron experiments", etc., immediately mean a certain set of results — we should have something better than "BaBar and Belle"...

The one sentence summary (imho)

 Beyond improvement in SM measurements, strong constraints on NP in many FCNC amplitudes — much more progress in this than in error of SM parameters

Qualitative change before vs. after 2004 — in my mind this is the real justification of the Nobel Prize

• Measurements of $|V_{ub}|$ and $|V_{cb}|$ have been crucial to this — tree level constraints

Tremendous progress

- 10 years of BaBar and Belle data taking gave $\sim\!100$ times earlier (e^+e^-) data sets
- In some V_{xb} results, progress may have seemed slower than expected, however:
 - The errors have become a lot more meaningful (both experiment & theory)
 - Better control of some theoretical assumptions (incl. lattice progress)
 - Better control of experimental systematics
 - More cross-checks (theory + experiments)
 - More challenging methods used, to reduce model dependence
- Many of us feel that progress could in principle continue
 - Mature field, still, promising experimental and theoretical ideas keep emerging
 - Much of the B reco results are statistics limited
 - How to deal with averaging / combination questions as BABE era is ending

Some comments on $\left|V_{cb}\right|$

- I feel that the lack of understanding of the non- $D^{(*,**)}$ contributions is worrisome
- The $\frac{3}{2} \gg \frac{1}{2}$ (narrow D_1, D_2^* , broad D_0^*, D_1^*) rule relies on saturation by lowest states Can radially excited helicity-1 rates be important and not mess up E_ℓ spectrum?
- Modelling continuum only by Goity–Roberts (can one make up another model?)
- Role of $s\bar{s}$ popping? $B \to D_s^{(*)} K \ell \bar{\nu}$, $D^{(*)} \phi \ell \bar{\nu}$, etc. Possibly large impact for $|V_{ub}|$?
- Do we fully appreciate correlated impact on moments, m_b , $|V_{cb}| \& |V_{ub}|$ inclusive?
- Inclusive spectra: Several new results waiting to be included in analyses. Based on $\Gamma(B \to X_c \ell \bar{\nu})$, I do not expect surprises; firm up error estimates Starting at $1/m_b^4$, can trade $\Lambda_{\rm QCD}/m_b \leftrightarrow \Lambda_{\rm QCD}^2/m_c^2$

$ar{b}b$	$1/m^2$	$1/m^3$	$1/m^4$
$lpha_s^0$	$lpha_s^0$	$lpha_s^0$	$(lpha_s^0)$
$lpha_s$	$(lpha_s)$	_	_
$lpha_s^2$			

Some comments on $\left|V_{ub}\right|$

- Inclusive / exclusive difference seems even more puzzling than for $\left|V_{cb}\right|$
- Importance of parameterizations of $B \to \pi \ell \nu$ form factor? Maybe one bin will get competitive?
- New $lpha_s^2$ calculation in the SCET region being implemented in extraction of $|V_{ub}|$
- The $m_X q^2$ combined cuts seemed to be an outlier BLNP increases by $\sim 7\%$ (Large q^2 : recall large λ_2 effect in local OPE, not to be confused in a fit with WA)
- What to do if tension between inclusive and exclusive measurements prevails after the last round of analyses?

Some personal hopes and concerns

- Difference of inclusive & exclusive $|V_{cb}|$ is puzzling Is our lack of understanding of the composition of the inclusive rate just a nuisance or the tip of an iceberg?
- Significant improvements in relating inclusive $B o X_u \ell \bar{\nu}$ data to $|V_{ub}|$ is possible
 - Modeling F(k) instead of $S(\omega, \mu)$
 - Include everything known; consistent combination of all phase space regions
 - Better explore unknown nonperturbative ingredients & constrain it from data
 - Decouple SF shape variation from m_b variation, constraints from moments
- Should be possible to combine all pieces of data with tractable uncertainties
 - Consistently combine $B \to X_s \gamma$, $B \to X_u \ell \bar{\nu}$, $B \to X_c \ell \bar{\nu}$ data to constrain SFs
 - Inclusive $|V_{cb}|$ uses combined fit; seems desirable for $|V_{ub}|$ too (subleading SF)
- $|V_{ub}|$ is tricky: to draw conclusions about new physics, we'll want ≥ 2 extractions with different uncertainties to agree well (inclusive, exclusive, leptonic)

Final Comments

- Improving accuracy of $|V_{xb}|$ will remain important to constrain non-SM physics (Current situation unsettled, PDG in 2008 inflated $|V_{cb}|$ error for the first time)
- The "B reco era": qualitatively new and powerful tool to go after certain physics
 A lot more could be gained if it could continue... Super-B? Super-KEKB?
- lacktriangle Several compelling reasons to want to collect ~ 100 times greater data samples

Let's thank Vera and David for organizing an enjoyable and productive workshop!