
# Superconducting Fault Current Limiter for Moscow 220 kV City Grid

<u>M.Moyzykh</u>, D.Sotnikov, D.Gorbunova, S.Samoilenkov m.moyzykh@superox.ru +7 (495) 669-79-95

www.superox.ru

### **Motivation**





### Scope

- First SFCL in Russian Power Grid
- 220 kV class
- In operation by 2018
- SuperOx manages full project
- 1. Superconductor manufacturing



2. Engineering and production



**SuperOx** 

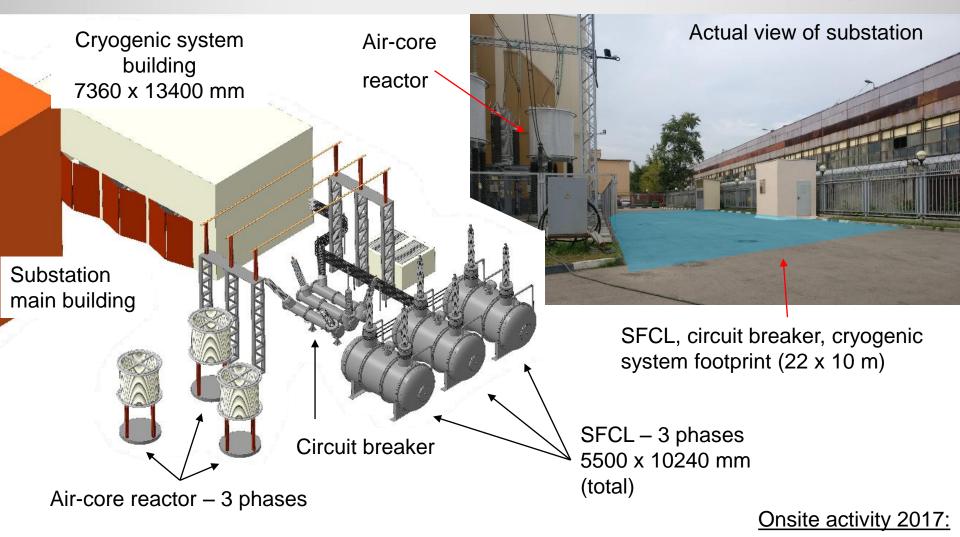


3. Onsite

construction

# **Utility requirements**

| Specification                       | Unit   | Value   |
|-------------------------------------|--------|---------|
| Nominal voltage (line)              | kV     | 220     |
| Maximum operating voltage           | kV     | 252     |
| Lightning impulse withstand voltage | kV     | 950     |
| AC withstand voltage                | kV     | 440     |
| Nominal frequency                   | Hz     | 50      |
| Nominal current (RMS)               | A      | 1200    |
| Resistivity (nominal state)         | Ohm    | 0,01    |
| Resistivity (limiting state)        | Ohm    | 40      |
| Installation - SFCL                 |        | Outdoor |
| Installation - Cryogenics           | Indoor |         |


To cable line X 23bD Amber Circuit breaker 107 637 52 5500 87.05 E / 10 Ri 26 F 9 24 11.02.10 Air-core SFCL reactor 100.00 4000 4 1 To substation

Installation of SFCL into 220/20 kV substation to compliment existing air-core reactors

# **SuperOx**

### **Substation Layout**





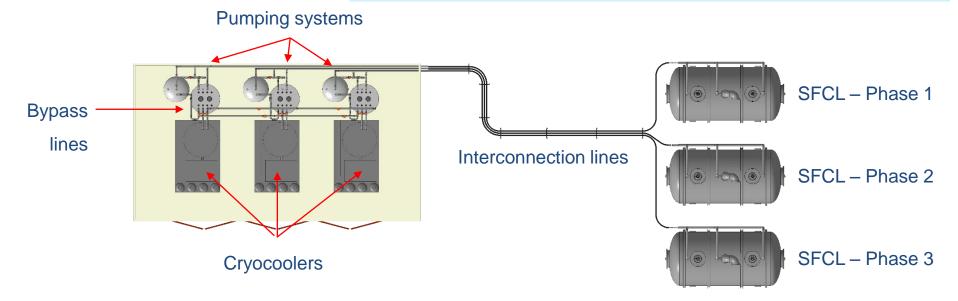
Auxiliaries relocation / Equipment foundations / Cryogenic system building

# **SFCL Cryogenics**

# **SuperOx**

### Main hardware:

- 1. 3 SFCL Phases
- 2. 3 Cryocoolers
- 3. 3 Liquid nitrogen pumping systems
- Interconnection and bypass lines (160 m total)


#### **Key features:**

•

- Flexibility:65-77 K temperature interval to tweak critical current
  - Capacity: max heat generation 3000 W

cryocooler power 6000 W

- <u>Redundancy</u>: only 2 of 3 cryocoolers required for nominal operation
- <u>Maintenance</u>: possible without disconnection of SFCL from 220 kV



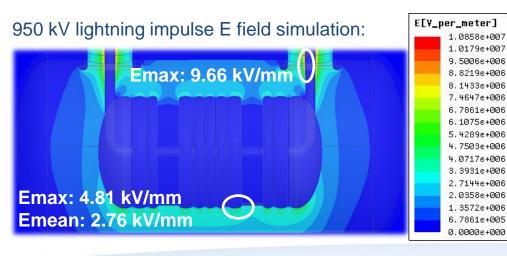
Top view of SFCL with cryogenic system

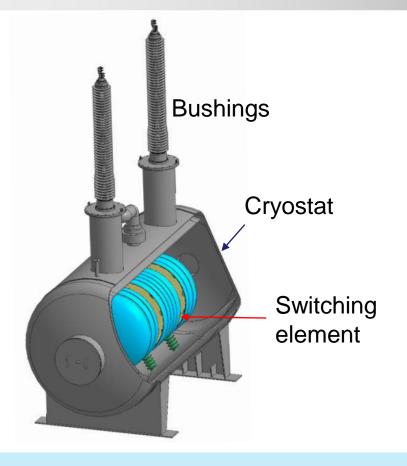
EUCAS 2017

# Phase design

- 1. Dead-tank type (grounded cryostat)
- 2. Cryostat

LN2 capacity: 11 000 kg max pressure: 10 bar


3. Switching element


Type: resistive

Superconductor: 2G HTS - 8400 m (single-phase)

Size: OD 1650 x 3200 mm (including shielding)

Weight: 850 kg (including shielding)

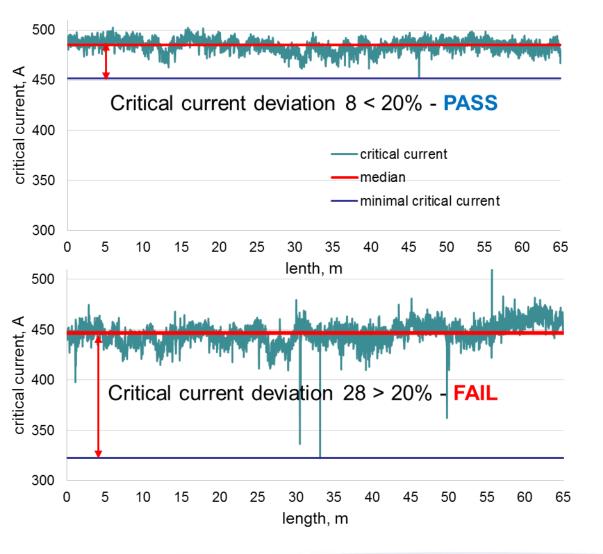


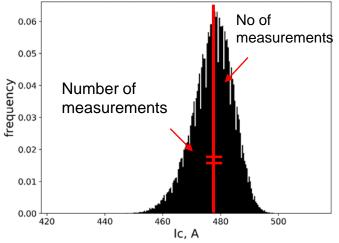


**SuperOx** 

#### Total phase dimensions:

5500 x 2850 x 6500 mm / 27 000 kg (operation) 5500 x 2850 x 3900 mm / 16 000 kg (transport)


# **HTS specifications**


| Specification                            | Value                | Comments                                                                              |
|------------------------------------------|----------------------|---------------------------------------------------------------------------------------|
| Superconductor                           | 2G HTS wire          |                                                                                       |
| Superconductor width                     | 12 mm                | +/- 0.1 mm deviation                                                                  |
| Piece length                             | 60 m                 |                                                                                       |
| Total superconductor length              | 3 x 8400 m = 25200 m |                                                                                       |
| Stabilizer                               | Copper               |                                                                                       |
| Critical current                         | 350 A                | Minimum value per piece length                                                        |
| Critical current deviation               | < 20 %               | Relative ratio of minimal critical current to median of critical current distribution |
| Resistivity at room temperature<br>(RRT) | 210 mOhm/m           | Specific resistivity per 1 meter                                                      |
| Resistivity deviation                    | < 10 %               | Relative difference between highest<br>and lowest value of RRT                        |

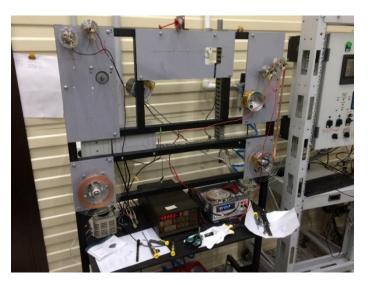
**SuperOx** 

# **Critical current deviation**



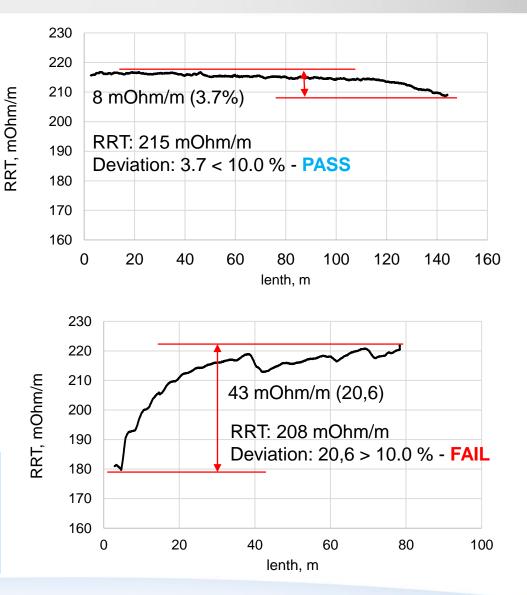





**Definition:** 50% of the current measurements fall above the median value (and 50% fall below it)

- Median-to-minimum value is selected as deviation-specific
- Represents operation of HTS wire in SFCL: <u>lower-critical current</u> <u>tape experiences more load</u> <u>during operation</u>

# Resistivity deviation (Room temperature) SuperOx


Resistivity deviation defines temperature uniformity of SFCL switching element at full load

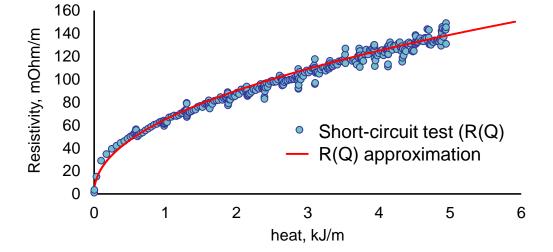
Reel-to-reel continuous measurement machine:



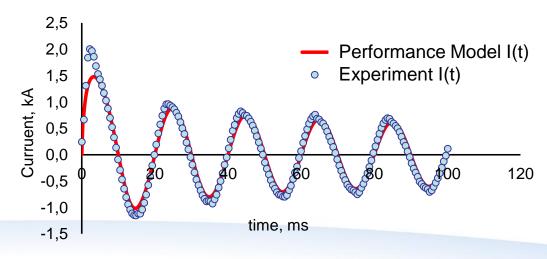
Process control for stabilizer layers is critical to avoid resistivity drift – more info by:

A. Molodyk, Presentation 2MO4-04 19 September, 13:30, Room 3+4




# **SFCL Performance Model**




#### Features:

- Resistivity is a function of heat R(Q)
- Performance model transforms R(Q) into resistivity and current as functions of time
- Adopted for EMTP (Electro Magnetic Transient Process) and RTDS (Real Time Digital Simulator) software

### 1. Approximation of SFCL resistivity vs heat R(Q) of test specimen



### 2. Use R(Q) to predict current vs time behaviour across SFCL



#### Purpose:

 Simulation of SFCL impact on grid regimes, fault current levels and relay protection coordination

**EUCAS 2017** 





IEEE STANDARDS ASSOCIATION

*<b>♦IEEE* 

SFCL will be tested according to IEEE C37.302-2015 standard

– Utility has approved

#### **Type Tests shortlist**

| N⁰                        | Name of Test                                               |  |
|---------------------------|------------------------------------------------------------|--|
| 1                         | Lightning impulse                                          |  |
| 2                         | Power frequency overvoltage withstand                      |  |
| 3                         | Partial discharge                                          |  |
| Acceptance test shortlist |                                                            |  |
| N⁰                        | Name of Test                                               |  |
|                           |                                                            |  |
| 1                         | Rated continuous current                                   |  |
| 1<br>2                    | Short-term overcurrent                                     |  |
|                           |                                                            |  |
| 2                         | Short-term overcurrent                                     |  |
| 2                         | Short-term overcurrent<br>Short-circuit current limitation |  |

IEEE Guide for Fault Current Limiter (FCL) Testing of FCLs Rated above 1000 V AC

**IEEE Power and Energy Society** 

Sponsored by the Switchgear Committee

IEEE 3 Park Avenue New York, NY 10016-5997 USA

IEEE Std C37.302™-2015

Authorized licensed use limited to: University of Florida, Downleaded on June 01 2016 at 14:07:09 UTC from IEEE Xplore. Restrictions apply.

### **Manufacturing and testing**





220 kV bushing during testing



Cryostat acceptance



Shield manufacturing



Test cryostat for sample high voltage tests

# Conclusions

- SuperOx project is the first SFCL in Russian grid, 220 kV-class, 1200 A for urban area power transmission – with start of in-grid operation planned in 2018.
- 2. SFCL features compact dead-tank design with cryogenic system aimed for continuous operation (current-carrying and current-limiting) even during maintenance procedures of cryogenic system.
- 3. 2G HTS tape requirements were evaluated.
- 4. SFCL performance model was developed to study SFCL impact on grid.
- 5. Acceptance tests procedure according to IEEE C37.302-2015 standard is confirmed by utility.

SuperOx



# Thank you for your attention!

# **SuperOx**

### Nauchniy pr-d. 20-2 117246 Moscow, Russia www.superox.ru