

SmartCoil –Shielded Core Reactor for Current Limitation on the Distribution Level

A. Kudymow¹, C. Schacherer², A. Bauer², H.P. Krämer², S. Elschner^{1,3},
J. Brand¹, S. Strauss¹, V. Zermeno¹, W. Goldacker¹
18.09.2017, EUCAS 2017

¹ Karlsruhe Institute for Technology KIT, Institute for Technical Physics, ² Siemens AG CT Erlangen, ³ University of Applied Science Mannheim

Project profile

Short description

- Design, construction und presentation of a novel nonlinear reactor coil for the fault current limiting (10 kV / 600 A single-phase)
- The concept uses a stack of superconducting shielding rings to reduce the impedance of the reacor during normal operation

Profile

2

- Project period: 09/2014 02/2018
- Funding: German Government, Federal Ministry for Economic Affairs and Energy (Grant 03ET7525A)
- Project partners:
 - Karlsruhe Institute for Technology (KIT)
 - Siemens AG

Karlsruhe Institute of Technology

SIEMENS

Project concept and specification

Specification of **SmartCoil** (single-phase)

Protected power S _{SFCL}	3,46 MVA
Voltage U_{SFCL} (10 kV / $\sqrt{3}$)	5,774 kV
Rated current I _D	600 A
Frequency f _n	50 Hz
Fault limiting time T _{lim}	≤100 ms
Impedance of reactor coil	6%
Impedance ratio between the limiting- and the nominal operation	≥ 4

Gap must be narrow to decrease the stray impedance X_{σ_1} , X'_{σ_2}

Simulation of AC-losses in HTS nominal operation

Contribution of the individual HTS-rings to the AC-losses

Simulated AC-losses in HTS rings nominal operation

Contribution of the top&bottom rings to the AC-losses

HTS with the higher critical current will be used in the top&bottom rings

A. Kudymow et al. SmartCoil – Shielded Core Reactor for Current Limitation on the Distribution Level EUCAS 2017, Geneve, 1LO1-03

Set-up for component test

DC-test

- Measurement of critical current I_c
- Measurement of contact resistance R_{joint}
- Conform to specification?
- Any degradation in test?

AC-test

- Quench of HTS
- Imitation of the fault conditions
- Thermal cycles

contactless measurement on HTS-ring

A. Kudymow et al. SmartCoil –Shielded Core Reactor for Current Limitation on the Distribution Level EUCAS 2017, Geneve, 1LO1-03

DC-testing of HTS-module (1 HTS ring)

Determination of I_c using the inductor and pick-up coils

A. Kudymow et al. SmartCoil –Shielded Core Reactor for Current Limitation on the Distribution Level EUCAS 2017, Geneve, 1LO1-03

DC-testing of HTS-module (1 HTS ring)

Determination of $I_{\rm C}$ using the inductor and pick-up coils

A. Kudymow et al. SmartCoil – Shielded Core Reactor for Current Limitation on the Distribution Level EUCAS 2017, Geneve, 1LO1-03

DC-testing of HTS-module (1 HTS ring)

Determination of *R_{joint}* using the inductor and the Hall-probe

AC-testing of HTS-module

Quenching transients

A. Kudymow et al. SmartCoil –Shielded Core Reactor for Current Limitation on the Distribution Level EUCAS 2017, Geneve, 1LO1-03

AC-testing of modul

Quenching transients - zoom in, the time-axis expanded

Summary & outlook

Completed work steps and achieved results

- Design of the fault current limiter (single-phase 3,46 MVA)
- Specification, choice and qualification of 2G HTS
- Simulations of 2G HTS to optimize the geometry and the losses
- Specification of the GFRP cryostat with particulary small wall thickness
- Developing of suitable contacting method for HTS rings (soldering)
- In-situ determination of critical current and contact resistance
- 26 (of 40 needed) HTS modules are manufactured and tested

Next steps

- Delivery of the GFRP cryostat
- Production and tests of remaining HTS components
- Installation and performance tests of the entire system in the field
 - Determination of losses in rated operation mode
 - Demonstration of the limiting capacity

Many thanks to the project team and to the companies involved in SmartCoil

Project (core) team

Anne Bauer (Siemens) Jörg Brand (Ingenieurbuero Brand) Otto Batz (Siemens) Steffen Elschner (KIT, HS Mannheim) Michael Frank (Siemens) Wilfried Goldacker (KIT) Hans-Peter Krämer (Siemens) Andrej Kudymow (KIT) Oliver Näckel (KIT) Marijn Oomen (Siemens) Christian Schacherer (Siemens) Severin Strauss (KIT) Peter van Haßelt (Siemens) Johann Willms (Synergie) Viktor Zermeno (KIT)

Companies involved

AMSC Fabrum Solutions ILK Dresden (GRP Cryostat) STI SuNAM SuperOx SuperPower THEVA THEVA Trench Austria

Add-on reactor coil

Specification of inductor	
Rated current	600 A
Rated voltage (Leiter-Erde)	5.77 kV
Height of inductor	1170 mm
Inner diameter	1318 mm
Number of turns	45
Number of layers	1
Nominal impedance	1.95 mH (0.60 Ω)
Short-circuit voltage	6 % (-> 1.2 %)
Operating temperature	< 155 °C

