

EUCAS 2017

September 2017, Geneva

A new EC project: FASTGRID

<u>P. Tixador - Grenoble INP</u>; M. Bauer - THEVA; C. Bruzek - Nexans; A. Calleja - OXOLUTIA; G. Deutscher - Tel Aviv University; B. Dutoit - EPFL; F. Gomory - IEE; L. Martini - RSE; M. Noe - KIT; X. Obradors - ICMAB; M. Pekarcikova - STUBA; F. Sirois - EPM

Cost effective FCL using advanced superconducting tapes for future HVDC grids Started January 1st 2017 (42 months)

Introduction - context

HVDC supergrids

HVDC circuit breaker

SGRI (200 kV)

(7 x 7 m²)

Footprint & cost

Strong interest of R-SCFCL

15

10

5

0

Cost of the Superconductor in a R-SCFCL:

 $Cost_{SC} \gg \frac{C_{SC}}{E_{lim}} k_a I_a V_{SC-Lim}$

150 V

Hastelloy Bonding

Hastelloy

Hot spot (x I_c)

\Rightarrow Reduction of C_{SC}

- ➤ Material & Larbor
- ► I_{c-w} Perf. & operating temp. => 65 K

\Rightarrow Enhancement of E_{lim}

- Conductor design (shunt)
- ➤ Hot spot issue for low prospective faults
 - > Homogeneity
 - > NZPV
- > New route

Advanced REBCO tape

- > Low standard deviation in term of critical current over the tape length
- > Critical current higher than 1000 A/cm-w at 65 K (self-field)
- > Electric field higher than 100 V/m (50 ms)

Emerging REBCO tape

- > Tape with enhanced propagation velocity (CFD concept)
- > Sapphire substrate REBCO tape with ultra high electric fields

Smart module of a HVDC apparatus

- > Current and voltage in the range of 0.5/1 kA and 30/50 kV
- > New functionality such as quench detection through optical fiber
- > Extensive testing of the module in relevant operating conditions

THEVA

After optimization of process parameters:

- $I_{\rm C} > 500A$
- $\Delta I_{\rm C} < 5\%$

can be produced with high yield

Example: Ag thickness

- A numerical model in COMSOL has been developed
- Various configurations of shunt tested in different scenarios (limitation, hot spot) with soldered or adhesive bonding
- Two architectures to test
 - CuproNickel shunt (Cu₆₀Ni₄₀) 150 μm- 300 μm
 - 5 μm solder PbSn
 - Hastelloy shunt 500 μm 800 μm
 - 5 μm solder PbSn

Validations tests and first tests are undergoing

Conductor with high electric fields (> 100 V/m) – other approach

-0.5 × 10⁻⁴ m

- High thermal capacity,
- Electrically insulating layer

-1.5

Shunt properties:

 $C_p = 900 \text{ J/(kg.K)}$ at 77 K $\lambda = 1 \text{ W/(m.K)}$

NZPV enhancement: Current Flow Diverter (CFD) concept

- Full 3D numerical simulations of 2G HTS CCs including the « Current flow diverter » (CFD) concept
- Types of shunt investigated:
 - Hastelloy, Stainless Steel, Composite, CuproNickel, etc.
 - Shunt thickness: 0 200 microns
- Calculations also realized for tapes based on a sapphire substrate

Quench simulation of a CFD-2G HTS CC with a 100-microns-thick Hastelloy shunt

The NZPV can be increased from

0.5 m/s to 15 m/s (x 30)

using the CFD even with a thick shunt

CFD realization through Ink Jet Printing (IJP): customization of conductors

IJP can be used to pattern customized tracks

THEVA tapes are coated by IJP with amorphous Y₂O₃ layers tracks: CVD

Surface temperature distribution

IJP nanometric coatings of insulating layers customized

- IJP metalorganic precursors (~ 100 nm)
- High deposition speed (>20 m/h)
- Long lengths demonstarted (> 100 m)
- Low temperature annealing (T ~400-500 °C)
- SC performances CC stable
- Test of limitation properties underway

Ink Jet Printing: customization of conductors for FCL

Thick YBCO layers can be grown after IJP deposition (I_c > 220 A/cm-w on LAO): implementation on sapphire substrates under way.

Ultra high electric field tapes (>1000 V/m) expected.

CSD growth of thick YBCO layers on Sapphire

Smart module of a HVDC apparatus

- Current and voltage in the range of 0.5/1 kA and 30/50 kV
- ➤ New functionality such as quench detection through optical fiber
- > Extensive testing of the module in relevant operating conditions

- Preliminary Electro-thermal simulations on HTS tapes, show the feasibility of a system which can detect quickly and with good spatial resolution.
- Further investigations with Optical Fiber implementation in the model
 - Mesh issues and computational time.
- Study of feasibility for the integration
 - Which is the shunt? Which is the geometry? Is it feasible integrate a fiber in the shunt?
- Test samples with Optical Fiber integrated

Two studies are undergoing to validate the FCL design with pancake

Voltage breakdown

Imposition of High voltage in DC in LN2 with or without bubbles

Dielectric studies of liquid Nitrogen at 77 K, 65 K with or whitout pressure
Impact on a Superconducting FCL

High-speed thermal imaging of quench propagation in HTS tapes using temperature-sensitive fluorescent films

H2020 FASTGRID project started January 1st 2017 with objective to reduce the cost of the REBCO tapes

- High I_c tapes & operation at 65 K (1000 A/cm-w)
 - Hot spot issue to be carefully studied
- High Electric field under limitation (> 100 V/m)
 - High I_c homogeneity (5 % already reached by THEVA)
 - Enhancement of NZPV
 - Current flow diverter (realization through Ink Jet Printing)
- New route: sapphire substrate based tapes
 - Successful short tapes
- 50 kV 1 kA module
 - Quench detection and temperature through fiber glass
 - Works on electric insulation & winding configurations
- New investigation tools
 - High-speed thermal imaging using temperature-sensitive fluorescent films

Thank you!

http://fastgrid-h2020.eu

