Universal Lower Limit on Vortex Creep in Superconductors

Serena Eley, Postdoctoral Researcher

Leonardo Civale, PI Condensed Matter & Magnet Science Los Alamos National Laboratory (LANL) Los Alamos, New Mexico USA

Collaborators:

Boris Maiorov (LANL) Masashi Miura (Seikei University, Tokyo, Japan)

<u>Outline</u>

- Importance of considering flux creep
- Vortex creep in YBa₂Cu₃O_{7-δ} films & Fe-based superconductors
- Relationship between creep rate and material parameters

Vortices in the Mixed State

Figure from W.-K. Kwok et al, Rep Prog Phys 79, 11 (2016)

Importance of Considering Flux Creep

Fig. from W.-K. Kwok et al., Rep Prog Phys 79, 11 (201

Engineer pinning to reduce creep

Models of Flux Creep

<u>Anderson-Kim model</u>:

$$E \sqcup e^{-U_{act}(J)/k_BT}$$

$$U_{act} \mid U_0 \mid 1 - J/J_c \mid$$

$$J(t) = J(t_0) \left[1 - \frac{k_B T}{U_0} \ln \left(\frac{t}{t_0} \right) \right]$$

$$U_{\rm act}(J) \to U_{\rm o}$$
 as $J \to 0$

$$S = \frac{-1}{J(t_0)} \frac{dJ}{d \ln(t/t_0)} \mu \frac{k_B T}{U_0}$$

Vortex elasticity \Rightarrow as J decreases the vortex segment that jumps becomes longer $\Rightarrow U_{\text{act}}$ increases and **diverges** for $J \rightarrow 0$ (glassiness)

$$E \mu e^{-U_{act}(J,B,T)/k_BT}$$

$$U_{act} \sqcup U_0 \left(J_c \setminus J\right)^m$$

$$S = -\frac{d \ln J}{d \ln t} = \frac{k_B T}{U_0 + m k_B T \ln(t/t_0)}$$

$$S \sim \frac{1}{m \ln(t/t_0)} \sim \frac{1}{30m}$$
 High *T* plateau

Creep in YBa₂Cu₃O_{7-δ}

Single Crystal

$$S = -\frac{d \ln(J)}{d \ln(t)} = \frac{k_B T}{U_0 + \mu k_B T \ln(t/t_0)}$$

Irradiation Increases Creep in YBCO Coated Conductors (CCs)

- S. Eley, et al., SuST **30** 015010 (2017)
- M. W. Rupich et al., *IEEE Trans. Appl. Superconductivity* **26** 3 (2016) (gold-irradiation)
- J. R. Thompson et al., *PRB* **47** 14440 (1993) (single crystal)

Vortex Depinning from Columnar Defects (CDs): YBCO

Random nanoparticles

Creep in YBCO: Decades of microstructure modification

Examples (TEM images) a, b, American Superconductor Corp, (images by D. Miller, Argonne NL) **c, d,** Grown by M. Miura

34 samples: Different microstructures

B. Maiorov et al.,

Nat. Mater. 8 5 (2009)

case

25 nm

BaZrO₃ nanoparticles

BaZrO₃ nanorod

Slide 8/19

Expectations for Creep in Iron-based Superconductors

Creep is faster in high- T_c SC than in low- T_c SC We expected S in iron-based superconductors to lie in between

• Low T:
$$U_P \sim (H_c^2/8\pi) V_P \sim \xi^2$$

High T_c SC: Small $\xi \longrightarrow$ Small U_p (?) \longrightarrow Large $S \longrightarrow$ How large?

Magnitude of S should somehow positively correlate with Gi

Ginzburg number:
$$Gi = \frac{g^2}{2} \left[\frac{m_0 k_B T_c}{4 \rho B_c^2(0) \chi_{ab}^3(0)} \right]^2 \propto \frac{g^2 T_c^2 / 4}{\chi^2}$$
 parameterizes scale of thermal fluctuations in a superconductor

Material	Gi
Nb	10-9
Fe-based	~10 ⁻⁵ -10 ⁻⁴
YBCO	10-2

Creep in Iron-Based Superconductors Irradiation can reduce S in Fe-based superconductors

Creep still not much slower than in YBCO (Gi~10-2)

Note that Tamegai et al, [PRB **82** 220504 (2010), SuST **25** (2012) 084008] have extensively studied the effects of irradiation on iron-based superconductors.

Why is creep so fast in iron-based superconductors?

Material	Gi
Nb	10-9
Ca _{1-x} Na _x Fe ₂ As ₂	10 ⁻⁵
FeSe	10-4
Ba(Fe _{1-x} Co _x) ₂ As ₂	4x10 ⁻⁴
YBCO	10-2

Y. Sun, APEX 8 113102 (2015); J. Yang (in prepration); N. Haberkorn, PRB 84 (2011); N. Haberkorn, SUST 28 55011 (2011); S. Eley, Nature Materials (2017)

P-doped 122 films with Nanoparticle Inclusions

 $BaFe_2(As_{0.67}P_{0.33})_2$

• High J_c that can be enhanced by BaZrO₃ nanoparticle inclusions

M. Miura et al., Nat. Commun. 4 2499 (2013)

Why is creep so fast in iron-based superconductors?

Material	Gi
Nb	10-9
Ca _{1-x} Na _x Fe ₂ As ₂	10 ⁻⁵
FeSe	10-4
Ba(Fe _{1-x} Co _x) ₂ As ₂	4x10 ⁻⁴
$BaFe_2(As_{0.67}P_{0.33})_2$	9x10 ⁻⁵
YBCO	10-2

Y. Sun, APEX 8 113102 (2015); J. Yang (in prepration); N. Haberkorn, PRB 84 (2011); N. Haberkorn, SUST 28 55011 (2011); S. Eley, Nature Materials (2017)

- Which so condenses to find the condense of the condense of
- What should we have expected? How much lower can we go?
- Can we predict creep rates based on material parameters?

Lower Limit to Vortex Creep in Superconductors (at low temperatures)

Limitations to Analysis

- Anderson-Kim regime: $S \sim k_B T/U_P$, $J \sim J_c$
- Low *H*: Single vortex
- Low $T: U_P \sim (H_c^2/8\pi)V_P$, $\sim T$ independent

$$Gi = \frac{g^2}{2} \left[\frac{m_0 k_B T_c}{4\rho B_c^2(0) \chi_{ab}^3(0)} \right]^2 \propto \frac{g^2 T_c^2 / 4}{\chi^2}$$

Columnar Defects

Half-loop formation $V_{\rm P}{\sim}2\pi\xi_{\rm ab}^{\ \ 2}\ell_{\rm bl}$

Nanoparticles $R \sim \xi^{\sim \zeta}$ $V_{\rm P} \sim (4\pi/3)(\xi_{\rm ab}^{-3}/\gamma)$ Half-loop formation $V_{\rm P} \sim 2\pi \xi_{\rm ab}^{-2} \ell_{\rm bl}$

Arbitrary shape/size
Half-loop formation

 $V_{\rm P} \sim 2\pi \xi_{\rm ab}^2 l_{\rm hl}$

 $S \gtrsim Gi^{1/2}(T/T_c)$

No Materials Violate Lower Limit

Few Materials Have Reached Limit

gray region captures uncertainty in $Gi^{1/2}(T/T_c)$, due to the uncertainty in λ

P-doped 122, YBa₂Cu₃O_{7-δ}, MgB₂ (all films)

- Indicated fields (lowest B used that is above self-field)
- Dashed line shows $Gi^{1/2}(T/T_c)$ limit for each film

Future Work

Future Work

Conclusions

- S(T) cannot be smaller than $Gi^{1/2}(T/T_c)$ in any material (in the Anderson-Kim regime)
 - Fundamental limitation to how much creep can be slowed through modification of the microstructure
 - Serve as a guide for when further improvements can be achieved
- Creep problem in high- T_c superconductors can not be fully eliminated
 - Limit to how much it can be ameliorated
- Any yet-to-be-discovered high-T_c superconductors will have fast creep
- Sheds light on designing materials with slow creep

Future Work

- Precise tuning of Gi and limits to creep outside Anderson-Kim regime
- Creep is fast in very thin films! (systematic study: arXiv:1709.02776)

Few Materials Have Reached Limit

P-doped 122, YBa₂Cu₃O_{7-δ}, MgB₂ (all films)

- Indicated fields (lowest *B* used that is above self-field)
- Dashed line shows $Gi^{1/2}(T/T_c)$ limit for each film
- BaFe₂(As_{0.67}P_{0.33})₂: gray region captures uncertainty in $Gi^{1/2}(T/T_c)$, due to the uncertainty in λ

Why Does Irradiation Sometimes Increase Creep?

Can we design pinning landscapes that increase J_c and reduce S?

- Optimize density of nanoparticles?
- Learn lessons from successes in samples with columnar defects?

Office of