Micro-straining tuning for strong and isotropic artificial pinning centers (APCs) in YBCO films

Bibek Gautam, Shihong Chen, Jack Shi, and Judy Wu
University of Kansas, USA

Mary Ann Sabestian, and Timothy J. Haugan
U.S. Air Force Research Laboratory, USA

Shihong Chen, Yanbin Chen, Lei Sun, Zhongwen Xing
Nanjing University, China

Wenrui Zhang, Jijie Huang, and Haiyan Wang
Purdue University, USA

Joseph Prestigiacomo, and Mike Osofsky
U.S. Naval Research Laboratory, USA

Sponsored by NSF and AFOSR
Epitaxial APC/RE-123 nanocomposites

Controlling parameters:
• Lattice mismatch at the interfaces (three shown)
• Elastic properties of both APCs and RE-123

• Shi and Wu, *Philosophic Magazine* 92, 2911 (2012); 92, 4205 (2012);
• Wu and Shi, in SUST Special Issue on Artificial Pinning Centers (2017), DOI:10.1088/1361-6668/aa8288
Understanding the Interplay of strains is important towards controlling APCs

Specific questions:

- **Morphology:** What impurity materials will form aligned nanorods (1D APCs) or nanosheets (2D APCs) and nanoparticles (3D APCs) in YBCO matrix?
- **Dimension:** What determines the dimension of the APCs?
- **Orientation:** What determines APC orientations? Is it possible to obtain mixed orientations from the same dopant?
- **Mixed APCs:** 3D pinning landscape via control of each types of APCs? (by *vicinal* or/and double doping)
Elastic Strain Model + Experiment
Understanding & controlling self-assembly of artificial pinning centers

APC material selection
APC morphology can be pre-screened based on their elastic properties & lattice constants

APC dimension
1D APC diameter is determined by the inverse strain decay length $\lambda_1(2)$

APC orientations
Configurations of APCs can be tuned by both APC concentration and YBCO matrix strain

Shi and Wu, Philosophic Magazine 92, 2911 (2012); 92, 4205 (2012); Wu and Shi, SUST Special Issue on Artificial Pinning Centers (2017) ASAP

Wu and Shi, in SUST Special Issue on Artificial Pinning Centers (2017), DOI:10.1088/1361-6668/aa8288
Switch of 1D APC orientation

1D APC switch from c-aligned to ab-aligned at high APC concentrations

Increasing YBCO matrix ab-plane tensile strain can cause splay around c-axis and switch from c- to ab-aligned of BaZrO$_3$ and BaSnO$_3$ APCs.

Flat STO

(a) Flat 2 vol. %

(b) Flat 4 vol. %

(c) Flat 6 vol. %

5 deg Vicinal STO

(d) 5° 2 vol. %

(e) 5° 4 vol. %

(f) 5° 6 vol. %

1D (c-axis)

1D (c-axis)+2D APC (ab-plane)

2D APC (ab-plane)

Wu et al, SUST 28, 125009(2015)
Mixed orientations of 1D+2D APCs

APCs of mixed morphologies can be generated from the same APC material
Benefits of mixed 1D+2D APCs: enhanced J_c

Overall enhanced J_c in all H directions in mixed BZO APC/YBCO possibly due to 1) reduced strain on YBCO; 2) mixed orientations of BZO APCs
1D+2D+3D mixed APCs
Rigidity of 1D APCs – tuning APC morphology using double doping (DD)

1D APCs with higher rigidity:
BSO + Y2O3:
1D + 3D APCs

1D APCs with lower rigidity:
BHO (BZO) + Y2O3:
1D + 2D + 3D APCs

Wu and Shi, in SUST Special Issue on Artificial Pinning Centers (2017), DOI:10.1088/1361-6668/aa8288
4 vol % BZO+3 vol % Y$_2$O$_3$ 6 vol % BZO+3 vol % Y$_2$O$_3$

(a)

(b)

(c)

(d)

(e)

1D APC 2D APCs 3D APCs

Chen et al, submitted to SUST
Opposite trends in J_c of DD (BZO+Y$_2$O$_3$) and SD (BZO only) with BZO APC concentration

Chen et al, submitted to SUST

Reduced J_c anisotropy in DD samples

6 vol % BZO (open) vs. 6 vol% BZO +3 vol % Y$_2$O$_3$ (solid)
B. Gautam et al, *AIP Advances*, 7 (7), 0753082017; Gautam et al, manuscript in preparation
Low rigidity of BHO 1D APCs allow mixed 1D+2D+3D APCs to be obtained via double doping for reduced J_c anisotropy.

B. Gautam et al, *AIP Advances*, 7 (7), 0753082017;

Gautam et al, manuscript in preparation.
2-6 vol% BHO + 3 vol % Y_2O_3 (open-65K, solid-77K)

4% BHO DD shows the best J_c, and smallest angular misalignment. More ab-aligned APCs at 6% BHO DD

B. Gautam et al, *AIP Advances*, 7 (7), 0753082017; Gautam et al, manuscript in preparation
Summary

- Understanding the Interfacial strains (local and global) provides means to control APC’s morphology, orientation and dimension.

- Two approaches have been explored to generate mixed APCs:
 - Single-doping APC (BZO, BSO) for 1D+2D APC/YBCO via control of the APC concentration and YBCO in-plane lattice constants (vicinal)
 - Double-doping $\text{Y}_2\text{O}_3 + \text{BZO}$ (or BHO) for 1D+2D+3D APC/YBCO at different concentrations

- The mixed APCs provide benefits of strong and isotropic pinning