High field superconducting characteristics at low temperature of SmBa₂Cu₃O_x coated conductor with artificial pinning center Yutaka Yoshida Nagoya university Japan #### Co-researchers Y. Tsuchiya, Y. Ichino, S. Miura (Nagoya university) S. Awaji (Tohoku university) K. Matsumoto (Kyushu institute of tech.) T. Izumi (National Institute of Advanced Industrial Science and Technology) A. Ichinose (Central Research Institute of Electric Power Industry) #### Acknowledgment This work was partly supported by a Grant-in-Aid for Scientific Research (15H04252, 15K14301,15K14302 and 16H04512). A part of this work includes the results supported by the ALCA project of the Japan Science and Technology Agency (JST) and NU-AIST alliance project. #### Lattice constant of various APC materials YBCO + BaYNbO₆[12] ~ 15 nm misfit ~ 9.5% > $(Y,Gd)BCO + Ba(Y,Gd)TaO_6$ ^[11] ~ 7 nm Misfit ~ 9-12% Misfit of 6-12%⇒ Nano rod A. Tsuruta IEEE TAS 23, 8001104 (2013). M. Mukaida JJAP 44, L952 (2005). R. Teranishi Physica C 468, 1522 (2008). K. Yamada Physica C 445 660 (2006). H. Kai SuST 23 025017 (2010). S.H. Wee APEX 3, 023101 (2010). A.K. Jha SuST 27, 025009 (2013). Y. Ichino JJAP 56 73101(2017) M. Malmivirta, IEEE TAS 25, 6603305 (2015). #### Table of the Contents ✓ Motivation Early studies of the film on single crystalline substrate ✓ Experimental Reel to reel system by PLD novel PLD technique √ Highlight data Coated conductor on IBAD tape ✓ Summary ## Experimental facility | Parameters | Condition | | |-------------------------|---------------------------------------|--| | Laser source | KrF eximer
laser
(オ = 248 nm) | | | Substrate | LaAlO ₃ (100)
IBAD tape | | | Substrate temperature | 700~950 °C | | | Oxygen partial pressure | 0.4 Torr | | | Laser fluence | 2 J/cm ² | | | Repetition late | 10 Hz | | #### Advantage of LTG technique With seed layer, we can fabricate purely c-axis oriented films at lower $T_{\rm s}$ ## Plane-view images of the TEM #### LaAlO₃ single crystalline substrate S. Miura, Y. Yoshida et al.: Jpn. J. Appl. Phy. 53, 090304 (2014) | film | diameter [nm] | Density [/µm²] | $B_{\phi}\left[\mathrm{T} ight]$ | |------------|---------------|----------------|----------------------------------| | LTG-sample | 7.0 | 2800 | 5.8 | | PLD-sample | 13.5 | 708 | 1.5 | #### Microstructure in SmBCO+BMO film #### **Growth temperature** □ Diameter: 4 nm Number density: 3100 /µm² Maximum tilt angle: ~35° **Discontinuity** □ Diameter: 6 nm Number density: 2300 /µm² Maximum tilt angle: ~25° □ Diameter: 13.5 nm Number density: 710 /µm² Maximum tilt angle: ~5°□ #### Distribution of inclination angles of the BHO nano-rods□ ## High number density Small diameter tilt for c-axis -40 -30 -20 -10 0 10 20 30 40 Inclination of BHO nano-rods (degrees) #### A diagram of the growth process of BHO nanorods in growth-kinetics #### Low- T_s sample High-T_s sample Migration length of BHO and SmBCO is large, Nucleation grows up at BHO only. Straight #### Low-T_s sample Migration length of BHO and SmBCO is small, and the crystal nucleation frequency of BMO increases, and high density BMO nanorods grow. So growth rate of BMO is low in the c-axis direction. Nucleation grows up in every step and terrace tilt for c-axis #### F_{p} – B at 77 K and lower temperatures Fig. Magnetic field dependence of $F_{\rm p}$ of the LTG and PLD high $F_{\rm p}$ films. Table Maximum F_p of the LTG and PLD high F_p films. | Film | F _p ^{MAX} at 77 K | F _p MAX at 40 K | F _p MAX at 20 K | |-----------------------|---------------------------------------|------------------------------|------------------------------| | LTG 5.6vol% | 14.2 GN/m ³ | 407 GN/m ³ | 779 GN/m ³ | | PLD high F_p sample | 28.0 GN/m ³ | 226 GN/m ³ | 437GN/m ³ | #### J_c -B & F_D of the LTG-SmBCO+BHO films @4.2K ✓ F_p of 1.6 TN/ m³ was realized; this value was comparable to the highest value recorded at 4.2 K and under 17 T. ## Main Topics Improvement of the superconducting properties and controlling microstructures of the REBCO coated conductor with BMO nanorods on IBAD tape - Improvement of Fp at 4.2K and 20K of SmBCO+BHO on IBAD tape fabricated LTG - Growth mechanism and sharp of the BMO nanorods fabricated with the high-speed growth technique #### SmBCO+BHO / IBAD tape fabricated by RTR system | parameter | condition | | |--|--|--| | Deposition method | ALT-PLD + LTG | | | substrate | IBAD-MgO | | | . | SmBa₂Cu₃O _y | | | targets | BaHfO ₃ | | | O ₂ pressure | 0.4 Torr | | | Laser frequency | 10 Hz | | | Energy density | 1.7 J/cm ² | | | Laser source | KrF eximer laser (λ = 248 nm) | | | BHO content | 3.8vol.% | | | Thickness | 240-440 nm | | | The number of laser pulses in each cycle (SmBCO : BHO) | 30 : 5 | | ## BHO nano-rods morphology LTG versus HTG film on IBAD **HTG** film Straight Low number density Discontinuous Small diameter ~ 4 nm Fireworks structure Straight and continuous Diameter ~ 5.4 nm HTG film fabricated at high $T_{\rm s}$ by PLD (conventional PLD) 13th European Conference on Applied Superconductivity, EUCAS 2017 ## Flux pinning force and field angle dependence of J_c #### @ 4.2 and 77.3 K \checkmark F_p at 77K of LTG SmBCO+BHO is low. However, F_p at 4.2K is 1.5TN m⁻³ at 4.2 K. HTG film □ ## Main Topics Improvement of the superconducting properties and controlling microstructures of the REBCO coated conductor with BMO nanorods on IBAD tape - Improvement of Fp at 4.2K and 20K of SmBCO+BHO on IBAD tape fabricated LTG - Growth mechanism and sharp of the BMO nanorods fabricated with the high-speed growth technique #### Simulation results BHO Nano rod high growth rate → Miniaturization of nanorod Y. Ichino IEEE Trans. Appl. Supercond., 27,4, 2017, 7500304. ## The growth direction of the BHO nanorods by plotting a histogram of the #### inclination angles #### using High-speed growth technique Growth rate: 12 nm/min 100 Hz [%] Specimen [STEM BF] JEM-2100F 200kV x800k 100% Operator: Operator Operator: Operator Growth rate: 25 nm/min | | 50 Hz | 100 Hz | |---|-------|--------| | , | | , | Inclination angle of BHO-nanorods [degree] Thickness of nanorod $4 \sim 6 \text{ nm}$ $3 \sim 5 \text{ nm}$ density $2188 / \mu \text{m}$ $3281 / \mu \text{m}$ B_{ϕ} 4.52 T 6.78 T thinner diameter, higher number density, tilted 50 Hz 100 Hz 0.4 0.3 0.2 0.1 0.0 -30 -20 ## F_p and Field angle dependence of J_c of the SmBCO+BHO on IBAD by High-speed growth technique As increasing laser frequency, J_{cmin} of the SmBCO-coated conductor fabricated by high-speed growth was higher than the SmBCO-coated conductor by conventional speed growth. 0.4 @77 K, 1 T \mathbf{O} 30 2 5 Magnetic Field [T] 60 Sample position [degree] 90 120 ## Summary For the high J_c coated conductor, we have investigated the relationships among changing of T_c , J_c and B_{irr} , growth temperature, the variety of BMO materials, its amount of additive, the kind of substrate, the surface morphologies et.al. - Using the low temperature growth technique with the seed layer, we can design and control the higher density and fine BHO nanorods grown in high quality SmBCO film, as changing lower substrate temperature. - Higher F_p at 10K and 4.2K at optimum T_s and BMO volume. F_p at 77K of LTG SmBCO+BHO is low. On the other hand, F_p at 4.2K is 1.6TN m⁻³ at 4.2 K. - LTG SmBCO+BHO on IBAD-MgO tape has F_p =260 GN m⁻³ at 40 K, 690GN m⁻³ at 20 K, and 1.5 TN m⁻³ at 4.2 K, respectively. - ●The high-speed growth technique for high performance SmBCO coated conductor is an important subject. In this presentation, we described the development of the coated conductor fabricated with a repetition rate of 100 Hz, changed from 10 Hz. We discussed the details of microstructures and superconducting properties of BHO nanorods in SmBCO coated conductor using the laser system with high repetition rate. ## Thank you for your attention ## Field angle dependence of J_c and the pinning phase diagram of the ratio of J_c^{rand} to the total J_c as a function of the magnetic field and temperature ## TEM images of the HTG SmBCO | d_{BHO} [nm] | $n_{\rm BHO} [\times 10^3 \mu {\rm m}^{-2}]$ | $B_{\phi}\left[\mathrm{T} ight]$ | FWHM [°] | |-------------------------|--|----------------------------------|----------| | 5.4 ± 0.9 | 2.8 ± 0.1 | 5.8 ± 0.3 | 1.1 | straight-shaped BHO nanorods grow from the bottom to the surface. #### J_c -B and F_p of the HTG-SmBCO+BHO on IBAD - The J_c at the self-field are 8.4 MA/cm² and 3.5 MA/cm² at 65 K and 77.3 K - The maximum F_p values of 120 GN/m³ and 32.5 GN/m³ were obtained at 65 K and 77.3 K.