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Intriguing puzzle in solid state physics:

High critical Temperature Superconductors (HTS)
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Nature physics 2, 138 (2006)

Towards a complete
theory of high 7,

Given the successes of the microscopic theory of
conventional superconductors, it seems natural to expect
a similar all-encompassing theory for high-temperature
superconductivity. But is it the best approach? Where are

we heading?
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( s high-temperature superconductivity (high-
T.) on the list of the most profound physics
problems, or is it a collective illusion rooted in
sociological developments in the late 1980s? It

is not an illusion — I perceive high-T, on a par with

dark energy, extra dimensions and the secret of life.

High-T, is a graveyard of theories. However,
this has had the beneficial effect of causing a
state of mind not dissimilar from the goal of Zen
Buddhism: think nothingness, in order to reach
enlightenment. Rid the mind from textbook
wisdoms, such as the conventional theory of
Bardeen, Cooper and Schrieffer (BCS), the Fermi
gas and even resonating valence bonds (RVBs),
and the essence of high-T_ comes into view. The
metallic state at optimal doping embodies the
enlightenment. Rather than being complicated,
this ‘bad’ metal shows a sacred simplicity —
symbolized, for example, by its linear resistivity as
a function of temperature, up to the melting point
of the crystal. This reveals principle at work, of a
quality of Einstein’s principle of equivalence.

[ am convinced that this principle cannot be
found by merely thinking hard — the reason I
stopped designing theories. It requires experiments
to give away the clue, and there are reasons to be

turther evidence that phonons play an important,
albeit quite unusual, microscopic role. Even if this
does not lead to the magic bullet, it has at least the
effect of discrediting the influential religious dogma

and Hubbard will solve all problems.
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optimistic. A group of experimentalists are providing

that the electronic toy models invented by Anderson
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Charge Density Wave (CDW) order

Charge density wave
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Looking into the superconducting dome from different perspectives

Nano scale ordering
Transport Anisotropy in nanowires

2e or not 2e \

Little-Parks ring, nanoSQUID

Excitation spectrum
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Doping and temperature dependence: new insights about HTS

Nano scale ordering 2e or not 2e
Transport Anisotropy in nanowires Little-Parks ring, nanoSQUID
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Nano-patterning of HTS films: wires, nano-rings, nanoSQUIDs, SET ...

e-beam defined carbon mask

The challenge
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Evidence of damage during Ar*-ion etching
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« Depairing critical current measured in YBCO

nanowires with cross section 50x50 nm?2

Nawaz, Arpaia, Lombardi, Bauch, PRL 110, 167004 (2013);

k Nawaz, Arpaia, Bauch, Lombardi, Physica C 495, 33, (2013)




Josephson-like behavior of nanowires

Origin of Current Phase Relation

(Likharev, RMP 51, 101 (1971))
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Current Voltage Characteristic
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Superconducting Loop

Key feature of superconductivity: Fluxoid quantization

Total flux through the loop = INTEGER * FLUX QUANTUM

T 4= h
\¢+ﬂo§ﬂﬂ_]s'dr}_n'2_e
f

7,

Superconducting loop keeps total flux
always at an integer multiple of h/2e




Superconducting QUantum Interference Device (SQUID)

flf n=2
2 -4
Superconducting loop keeps total flux 1 n=
always at an integer multiple of h/2e 1
N3 |
| 1
1 2 LT,

J. Clarke. in H. Weinstock and R. W. Ralston eds. The new superconducting electron-
K ics, pages 123-180. Kluwer publishers, The Netherlands, 1993.
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YBCO nanoSQUID implementing nanowires

Arpaia, Arzeo, Nawaz, Charpentier, Lombardi, TB, APL 104, 072603 (2014)



YBCO nanoSQUID implementing nanowires
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Demonstration of critical current modulations in the full temperature range below the
transition temperature Tc.

Arpaia, Arzeo, Nawaz, Charpentier, Lombardi, TB, APL 104, 072603 (2014)



YBCO nanoSQUID: sub-p®,/Hz'2 sensitivity

Squid Voltage, (mV

N

« White noise level better than 1 p®,/Hz'? at 8K ! T
o

S/

White Flux Noise Sy (f) ~4kgTL2/R (?) .g

o

» Detection of magnetic nanopatrticles in high g
magnetic fields and wide temperature range. i

+ Single spin detection? e EEL IRETE W S ]
10° 10’ 10° 10° 10* 10°

Frequency, (Hz)
Arpaia, Arzeo, Nawaz, Charpentier, Lombardi, TB, APL 104, 072603 (2014)



Improving white flux noise

/

V 4

Flux noise limited by amplifier input noise

A

Large voltage modulation depth is needed.

One possibility is to increase normal state resistance of the wire.

/

Arpaia, Arzeo, Baghdadi, Trabaldo Lombardi, Bauch, SuST 30, 014008 (2017)



Improving white flux noise

/ White flux noise limited by amplifier input noise \

Increasing normal state resistance by:

« Removing gold capping 1 ud/HzV2 = 0.6 ud,/Hz?
 Using thinner YBCO films 0.6 uPy/HzY2 > 0.45 pdy/HzL?
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Device  Au t w | I Je g, 4R Ry AVy, ¥ g-l-i-
(mm) (nm) (am) (pA) (Acm ) @ @ (mV) (mV/d)  (udHe %)
NSQI0 [No 10 15 100 130 1.0 = 10" 23 110 130 (.65 36 <045
N5QZ20 No 20 [i%] 100 S0 22w 107 24 19 33 0.45 21 -

NSQ50  No 50 63 100 1000 15 = 10" 20 13 12 (.42 22 < 0.6
NSQR  Yes 50 65 1000 2220 34 = 107 I8 1.5 4 0.2 1.5 <1

Arpaia, Arzeo, Baghdadi, Trabaldo Lombardi, Bauch, SuST 30, 014008 (2017)




Towards field sensitivity

-

Improving white flux noise

Flux noise QO loop area
Implications on:

» Single spin detection.
» Detection of magnetic

nanoparticles in high magnetic
fields.

~

/ Magnetic Field noise = \

Flux noise / magnetic pickup area

Arzeo, Arpaia, Baghdadi, Lombardi, Bauch, JAP 119, 174501 (2016)



Towards field sensitivity

-

Magnetic Field noise =
Flux noise / magnetic pickup area

~
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Arzeo, Arpaia, Baghdadi, Lombardi, Bauch, JAP 119, 174501 (2016)



Towards field sensitivity

/ Effective area vs. pick up loop diameter \

(a) v d'=1 um.'measu'red v ‘ ) v .
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94% of flux coupling occurs via
kinetic inductance
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Arzeo, Arpaia, Baghdadi, Lombardi, Bauch, JAP 119, 174501 (2016)




Towards field sensitivity

~

/ Summary of nanoSQUIDs w/ pickup loop
Device dw(pgm) 1(nm) w (nm) d(pm) Aeg(pm?) Ic(mAd) O6R(Q) Ve(mV/ ) S;{f‘,[ﬁ@[)uﬁfﬂz}
NSQ1 1 200 65 100 24 1.7 0.8 2.4 <1
NSQ2 1 200 65 400 62 2.4 24 0.75 <2
NSQR 1 100 65 - 2.8 1.75 0.2 1.5 <1

* Flux noise independent of pick up loop.

« Magnetic field noise properties improve with pick up loop size.

* Coupling mainly via kinetic inductance.

o

/

Arzeo, Arpaia, Baghdadi, Lombardi, Bauch, JAP 119, 174501 (2016)



Increasing further effective area
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Xie, Chukharkin, Ruffieux, Schneiderman, Kalabukhov, Arzeo, TB, Lombardi, Winkler, submitted to SuST




Noise at 77 K
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« no Au capping =
* no pick up loop
© Vi~ 15 Vi, S S N NENL RN SR S
* Amp: S, 2~ 0.4 nV/Hz'? 10° 10° 10° 10° 10’ 10°

-3

\

Frequency (Hz)

Expected field noise taking achieved effective area A ~ 0.1 mm?;
S,!? ~ 500 fT/HzY2
For HTS MEG applications: S,'? < 50 fT/Hz%2 needed

= SQUID electronics with lower input noise (Cryoton)




Resistance and critical current 1/f noise

Spectrum
Analyzer

>
(b)

6V = (OV/OR) R + (0V/0Ic) dlc

\_ /

Trabaldo, Arzeo, Arpaia, Baghdadi, Andersson, Lombardi, Bauch, IEEE TAS 27, 7500904 (2017)




Resistance and critical current 1/f noise

SV/V2[1/H2]

Hooge’s law for 1/f noise
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e
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g» 3.4° 10_4 (Hooge’s parameter)

Critical current 1/f noise is roughly 10 times larger

t =50 nm,
., Tum

_/

Trabaldo, Arzeo, Arpaia, Baghdadi, Andersson, Lombardi, Bauch, IEEE TAS 27, 7500904 (2017)



/High critical temperature superconductor nanodevices )

* Nanoscale devices beyond state-of-the-art

 Vision: obtain groundbreaking information
about the microscopic mechanism of HTS

e guantum limited detectors
* Nanomagnetism
« HTS MEG systems




Transport anisotropy and noise
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Finite correlation length of charge density waves (CDW): 10-40 nm
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Similar effects expected for superfluid density: critical current fluctuations

Carlson et al., Phys. Rev. Lett. 96, 097003 (2006)
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Probing the AC-Josephson-like behavior:
Detection of Shapiro-like steps under microwave irradiation

Phase locking of driving microwave
field at frequency wy and Abrikosov
vortex motion across the wire.

I/n :n)(%fo
2p

)
=

Shapiro steps observable to the
160 order

g,
>
2 “ ‘

0 i 15 2 25 3
Nawaz, Arpaia, Lombardi, Bauch, PRL 110,167004 (2013) V, (mV)




Probing the AC-Josephson-like behavior:
Detection of Shapiro-like steps under microwave irradiation

dv/dl, (2) 5
 Phase locking of driving microwave
field at frequency oy and Abrikosov S § 4
vortex motion across the wire. R 3
..... -

w = | s
V,=m =1, AL i || 2

2p A o

« Shapiro steps observable to the
160 order

*  Modulation of Shapiro-like steps
indicates the existence of a
periodic Current Phase Relation

O T . e ":; '":::;...::f;::f:ff:f::f:é.ﬁ:::f:
6 4 -2 0 2 4 6 -8-6-4-2 024268
Nawaz, Arpaia, Lombardi, Bauch, PRL 110,167004 (2013) (p/m (/7




current (A)

Critical current density J. vs wire width w:
a quality check

4 - )
) Jy A - Jdp
For w< I,= I/t
0 —
\ d X
( ] )
Y 1dp
2 <~
For w>[F, =1/t L/
q ° X
__ Transition from zero voltage state to finite voltage state of a wire:
x10"
: Transition from the zero voltage state to the finite voltage state
_ when the LOCAL current density j, (typically at the edge of the
] wire) is close to the Ginzburg Landau depairing current density
i j,~j (nucleation of vortices)
Al
z J¥ = 73 7y —» 1.5x10° A/cm?
* voltage (V) x10° 3 310 /770 / LX




YBCO nano-wire SQUIDs in literature

Appl. Phys. Lett. 65 (19), 7 November 1994

dc SQUIDs based upon YBa,Cu3;0, nanobridges

J. Schneider, M. Muck, and R. Wordenweber
Institute of Thin Film and Ion Technology (ISI), Research Centre Julich (KFA), 52425 Jilich, Germany

(Received 6 April 1994; accepted for publication 30 August 1994)
X100 nm? (l,w,al).11 Even for a calculated B8;~1, no sig-
nificant modulation of the critical current was observed for
v)ur HTS SQUIDS, i.e., Al /I .<1. The relatively high volt-

/ Appl. Phys. Lett., Vol. 68, No. 8, 19 February 1996
Superconducting quantum interference devices based
on YBaCuO nanobridges

M. V. Pedyash,® D. H. A. Blank, and H. Rogalla
Low Temperature Division, Department of Applied Physics, University of Twente, P.O. Box 217,
7500 AE Enschede, the Netherlands

(Received 21 September 1995; accepted for publication 18 December 1995)

for weak link SQUIDs. To explain this phenomenon, we con-
sidered degradation of superconductor in the nanobridge
area, which leads to a local suppression of 7. and to a tran-
sition from SNS to SS’S-type junctions with decreasing tem-
perature. This approach allows us to explain the experimen-

Ta>Ta>To

See also Supercond. Sci.Technol. 22 (2009) 064001
“Why NanoSQUIDs are important: an introduction to the focus issue”
by C. P. Foley and H. Hilgenkamp




Doping dependence: thin films
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