

SQUIDs with sub-micron Josephson junctions for ultra-low-field magnetic resonance imaging

EUCAS 2017

18 September 2017, Geneva

Juho Luomahaara¹, Mikko Kiviranta¹, Leif Grönberg¹, Koos Zevenhoven², and P. Laine³

¹VTT Technical Research Centre of Finland Ltd

²Aalto University

³Elekta Instrument AB

Combined magnetoencephalography (MEG) and magnetic resonance imaging (MRI)

- The analysis of MEG data requires comparison with structural images
 - MR images taken with a separate device
 - Increased work load and inaccuracies between two coordinate systems
- Combined imaging technology developed in two EU-funded projects
 - Ultra-low-field MRI
- Sensor technology based on superconducting quantum interference devices (SQUIDs) developed by VTT

P.T. Vesanen et al., *Magn. Reson. Med.* **69**, 1795 (2012).

Sensors in MEGMRI -project

- Concept: to develop (commercial) MEG SQUIDs further to meet the additional requirements demanded by ULF MRI
 - Recovery from large prepolarization pulses => flux trapping
 - Large sensor arrays in demand
 - All-thin-film sensors easy to mass produce
- ~ 60 planar sensors with one magnetometer and two 1st order gradiometers packaged in 20 modules
- Sensor noise levels ~2-4 fT/Hz^{1/2} / ~1-3 fT/(cmHz^{1/2}) and field tolerance up to 50 mT implemented with partial magnetic shielding

P.T. Vesanen et al., Magn. Reson. Med. 69, 1795 (2012).

Tech. 24, 075020 (2011).

Sensors in BREAKBEN - project

- Improvement of SNR for enhancing the image quality
- Specifications
 - High field tolerance required (Target: 150 200 mT)
 - Reduction of the noise level (Target: < 0.5 fT/rtHz)</p>
 - Full head coverage (> 100 channels)
 - Removal of Nb shields
- Alternative approaches to reach the targets
 - Tight shielding for SQUIDs placed far away from the imaging volume
 - Improved junction technology
 - Heating sensors
 - Defluxing/degaussing sensors

 $B_{\rm p} = 22 \text{ mT}, B_{\rm 0} = 50 \text{ }\mu\text{T}$

P.T. Vesanen et al., *Magn. Reson. Med.* **69**, 1795 (2012).

New fabrication process for small, cross-type Josephson junctions

- Succesful fabrication of JJs down to a realized junction size of 0.2 x 0.2 μm^2
- Critical current density range 0.1-3 kA/cm²
- Narrow junctions less sensitive to flux trapping

L. Grönberg, et al., "Side-wall spacer passivated sub-µm Josephson junction fabrication process," submitted for publication.

SQUID designs for the test fab round

- An array of 15 gradiometric SQUIDs with a realized junction size of 0.6 x 0.6 µm² coupled to a multiloop flux transformer
- Integrated magnetometers
 - Bugs in design, measurements performed without the pickup coil

SQUID characterization

- SQUID operation with smooth characteristics verified
- Measured device parameters
 - Junction size 0.6 µm
 - Junction critical current 8 µA
 - Dynamic resistance 130 Ω
 - Input inductance ~ 420 nH
 - Mutual inductance Φ₀/7.8 μA (feedback)
 - Mutual inductance $\Phi_0/5.6 \mu A$ (input)

SQUID noise characterization

• A fit to the measured flux noise spectrum:

 $S_{\phi} = (0.23 \ \mu \Phi_0 / Hz^{1/2})^2 + (9.5 \ \mu \Phi_0)^2 f^{-1.14}$

- Significant 1/f noise noise observed, corner frequency at 600 Hz
- In the white part of the spectrum, measurements still contained a noise contribution from the read-out electronics

Measurement setup for pulsing experiments

Test dewar designed and manufactured – by Elekta

Magnetically shielded room at — Aalto University

Helmholz coil

Coil system used for pulsing SQUIDs⁻ (~ 1.5 mT/A)

Biasing and readout electronics (with FLL) modified and adopted from previous projects

 Glass fiber dipstick with 3D printed mechanical parts

Field tolerance – response recovery

- Response recovery after perpendicular magnetic field pulsing measured
- Spontaneous recovery up to 7 mT
- Modulation curve maintained in the measurement field above 2 mT
- Assisted recovery
 - Heating elements placed close to junctions
 - SQUID operation recovered with a heating pulse of 25 V / 10 mA / 15 ms (independent of pulse magnitude)
 - Tested up to 150 mT without the pickup coil connected

Heating in an MRI sequence

- Magnetic field brought down ~ 20 ms after which the heating of the sensor is ended
- Modulation curve recovered at around 36 ms
 - Open loop mode
 - Flux sweep applied to feedback
- Transient-like noise not observed after magnetic pulsing
 - Flux locked loop (FLL) mode
 - No pickup coil
- Unshielded SQUID operation possible for ULF MRI

Summary

- A new, narrow line junction technology demonstrated
- New SQUIDs designed and characterized
 - Rather low white noise level but substantial 1/f noise
 - Bias reversal
 - Adjustment of SQUID parameters to their optimum
 - Spontaneous field tolerance of the sensors not very high but heating helps
 - SQUID array not the best choice from this perspective
 - Unshielded sensor realisation doable
- Final sensor performance evaluated with SQUID magnetic field sensors
 - Transient-like noise due to flux reorganisation in the pickup coil expected
 - Heating and/or defluxing
 - Choosing pickup coil
 - Technology: thin film vs. wire wound
 - Material: niobium vs. lead
 - Geometry: gradiometer vs. magnetometer

Thank you!