Transformation and perspectives of digital superconducting electronics
(lessons learned)

O. Mukhanov

HYPRES, Inc.
175 Clearbrook Road,
Elmsford NY 10523, USA
www.hypres.com
Acknowledgements

Background is layout fragment of ALU designed by A. Kirichenko
From ~2011, superconducting electronics is experiencing a transformation:

• New devices are brought in and being integrated (magnetic devices, nanowires, etc.) to address hard problems of conventional Josephson electronics.
• New fabrication processes relying on chemical mechanical polishing are introduced.
• New memory ideas,
• New design tools.

Lessons Learned:

- **Digital technology**
 - RSFQ to post-RSFQ
 - Energy-efficient classical computing, QC control layer, neuromorphic circuits

- **CAD tools**
 - NioCAD story
 - PSCAN2 vs Spectre ($70K vs 1M$)- focused work vs simple adaptation
 - Parameter extraction: L-meter replaced by InductEx
 - Cell Libraries (Lego, Flex)
 - Timing (Global vs Wave-pipelined)

- **Memory**
 - JJ RAM to MRAM
 - Physics/MatScience vs Engineering
Cryogenic Computing Complexity (C3)

- Approach based on:
 - *Near-zero energy* superconducting **interconnect**
 - *New SFQ logic* with no static power dissipation
 - *New energy efficient* cryogenic **memory** ideas
 - *Electrical or optical* inputs and outputs
 - *Commercial* cryogenic refrigerators

- **Logic thrust**: IBM team, NGES
- **Memory thrust**: Raytheon BBN team, NGES team
- **Gov. teams**: MIT-LL (fab), NIST (test verification), Sandia (failure analysis)

Logic Technology Lessons Learned

- Digital technology
 - RSFQ to post-RSFQ
 - Energy-efficient classical computing, QC control layer, neuromorphic computing
RSFQ has been a workhorse for last 20 years

RSFQ - Rapid Single Flux Quantum (from late 80s)

(also called SFQ - Single Flux Quantum logic)

Both Data and Clock are SFQ voltage pulses $V(t)$ with quantized areas

$$\int V \, dt = \Phi_0 = h/2e = 2.07 \text{ mV} \cdot \text{ps}$$

- 750 GHz digital frequency divider demonstrated
- internal memory
- gate-level pipelining
- high-throughput
- low switching power
- dc bias only
- local timing
- amendable for synchronous and asynchronous schemes

TWO MUCH POWER FOR LARGE SCALE CIRCUITS
Static and Dynamic Power Dissipation

• In conventional RSFQ, **static power dissipation** P_S in bias resistors is dominant.
• However for low complexity integrated circuits (ICs) with ~1,000 gates, this was not a problem.
• P_S will be a problem for high complexity ICs relevant for classical computing applications (such as supercomputers).
• P_S will be a problem for mK ICs needed for Quantum Computing applications.

Conventional RSFQ

$$P_S = I_b V_b$$

$$P_D = I_b \Phi_0$$

$$P_S \gg P_D$$

$P_D \sim \frac{3}{4} \Phi_0 I_c \sim 2 \times 10^{-19} \text{ Joule}$

P_S is the problem.
Many new post-RSFQ logics: ERSFQ, eSFQ, RQL, LV-RSFQ, AQFP

We focus here on ERSFQ (adaptive JJ phase balancing) and eSFQ (synchronous phase balancing)

ERSFQ and eSFQ achieve the fundamental SFQ energy dissipation related to magnetic flux crossing Josephson junction $E_{SFQ} \sim I_{bias} \Phi_0 \sim 10^{-19}$ Joule

- Eliminates static dissipation from bias resistors (dominating dissipation)

Retains all advantages of conventional RSFQ:

- dc-powered, amendable for serial biasing to reduce total dc bias current
- ballistic interconnects (no extra power for integrate connections)
- high speed operation (can work at 100s of GHz)
- largely preserves already developed cell libraries

Conventional RSFQ

$$P_S = I_b V_b$$
$$P_D = I_b \Phi_0$$

ERSFQ

$$P_S = 0$$
$$P_D = I_b \Phi_0$$

$I_b \sim \frac{3}{4} I_c$
Dissipated energy per one clock period:

\[E = \int_{0}^{T} I(t) \cdot V(t) \cdot dt = I_b \cdot \int_{0}^{T} V(t) \cdot dt = I_b \cdot \Phi_0 \]

Total power dissipation:

\[P = f_{clk} \cdot I_b \cdot \Phi_0 \]
Passive Transmission Lines (PTL)

- Energy-efficient: Passive (no power regardless of length).
- Delay is set by length (faster by x10 than JTL).
- Low time jitter.
- Only point-to-point (split by 2 is possible with insertion of resistors).

- Ballistic SFQ transport. One of the main advantages of SFQ circuits compare to any technologies.
- Typical PTL width – 2-4 μm (5 -11 Ohm impedance).
- Good for long interconnect. Not useful for short interconnect.
- At present, does not help with circuit density.
Scaling (miniaturization) - Tall Pole in the Tent

- CMOS progressed due to the ability to scale down
 - Dennard scaling (transistors gets smaller their power density stays constant) – propelled CMOS from 1974 to ~2006
 - Moore’s Law (transistor size reduction leads to more transistors per chip at the cost-effective optimum) - largely responsible for financial sustainability of CMOS technology

- Modern CMOS processor ~10^8 transistors per die, DRAM ~1 Gbit per die

- Modern SFQ digital circuit:
 - ~10^4-5 JJ\s per die
 - Circuit components are too large
 - Gate layouts are too large
 - Circuit implementations are too complex
 - SFQ EDA tools are not adequate for VLSI

Low superconducting circuit density is the bottleneck
Circuit Design Lessons

- Computer Aided Design (CAD) tools: treacherous path
 - Problem: low circuit density, large footprint
 - Cell libraries (Lego-style vs Flexibility)
 - NioCAD story
 - InductEx success story
 - PSCAN2 vs Spectre ($70K vs $1M investment)
 - Timing (Global vs Wave-pipelined)
Cell Library Approaches

Lego lib – smaller number of gates, as all gates are composed of elementary cells

Flex lib – larger number of gates, as some gates tightly integrate multiple cells sharing JJs, inductors, etc.

- Lego lib
 - Clock
 - Data
 - D-Flip Flop
 - JTL

- Flex lib
 - Clock
 - Data
 - JTL

Pre-C3 approach, still pursued by some due to simplicity

- 15 JJs (including bias limiters)
- 8 JJs (including bias limiters)

Learned from C3 experience

- x 2.3 smaller area
- x 2 less JJs
Cell Library Approaches

- **“Lego”** - mostly practiced in the 90s and largely abandoned, current attempts to resurrect for new fab process
 - Every port has predetermined location
 - Power plane and PTLs are included into cells
 - Easy for manual design, simple optimizers can be used
 - Results in excessively large area, large power
 - Easy verifiable (even manually)

- **“Flex”** – boxed gates or larger subcircuits, JTLs are flexible (inductance p-cells)
 - Ports are different
 - Power distribution and PTLs are added as the last stage of larger subcircuit design
 - More difficult for manual design, requires powerful optimizers
 - Results in minimum area and power
 - Not easy to verify (manually)

1. If one wants to design something really competitive and having practical significance (e.g. microprocessor), one has to use the most efficient, smallest footprint cell library.
2. For demo circuits to impress funding people, the “lego” circuit prototypes would be sufficient.
8-bit Microprocessor (C3 project)

The bit width of the IM is defined by three 5 bit addresses (2 read and 1 write addresses) for Register File and a 6 bit instruction code for ALU (21 bits in total).

The total area of the CPU is ~2.5 x 2.5 mm², total number JJs is ~ 28,000

Courtesy of Alex Kirichenko
EDA Tools: NioCAD (2007-2012)

A superconductor CAD package that would provide a complete and integrated solution for the development of superconducting circuits:

- Circuit capture – Drawing circuit elements using a schematic editor and/or a text editor;
- Circuit simulation – A SPICE simulator to verify circuit operation;
- Mask capture – A graphics editor to define layout structures;
- Component extraction – The 3D extraction of components from the circuit layout, using tools such as InductEx;
- Circuit optimization – A process of constantly changing circuit component values, simulating and evaluating the circuit in order to, for example, obtain better yield;
- Logic cell characterization - The characterization of a subcircuit in order to create a logical model that can be used in larger scale designs and logic simulations.
Key feature: appears as a gem, doomed the system

Key Feature: The layout and physical models of components were tightly linked in the software, so that a change in the one would be carry over the other:

- The fundamental linkage between the physical and layout model of a circuit element (e.g. an inductor as implemented in the NioCAD system)

- Worked perfectly on the cell level
- Failed in complex circuit design (when cell are used many times)
- The required change was too fundamental
 - NioCAD was closed in 2012

From: W. Perold, Dr Eng dissertation, Stellenbosch Univ. 2017
Success Story: Layout Extraction Tools

InductEx gives valuable extraction results for difficult design scenarios [1]

- Layouts with skyplanes, holes and coupling, parasitic coupling, inductors threading multiple ground planes, large and complicated coils
- Especially useful for eSFQ or ERSFQ gates, AQFP gates, layouts in 6+ layer advanced processes

Several features/improvements added last 2 years

- Full-circuit extraction (L, R, JJ area) from schematic netlist and layout files
- Optimised solvers for faster calculations (x100 compared to old FastHenry)
- New tetrahedral solver for Q4 2015: full impedance, hybrid meshes, chip-level modelling for bias current distribution and ground return currents.

<table>
<thead>
<tr>
<th>Elements</th>
<th>InductEx</th>
<th>FastHenry standalone</th>
<th>Lmeter</th>
<th>3D-MLSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>3D, holes, vias, multiple ground/sky planes</td>
<td>3D, holes, vias, multiple ground/sky planes</td>
<td>Quasi-3D, vias, no sky planes</td>
<td>Quasi-3D (thin layer assumption), holes, trapped flux, no vias.</td>
</tr>
<tr>
<td>Circuit netlist extraction</td>
<td>Full circuit, with coupling and resistance</td>
<td>No</td>
<td>Superconductive only, coupling not certain, R separately</td>
<td>No</td>
</tr>
<tr>
<td>Support</td>
<td>Active, continued development</td>
<td>No</td>
<td>No</td>
<td>Active, continued development</td>
</tr>
<tr>
<td>Speed</td>
<td>Fastest</td>
<td>Slowest</td>
<td>Faster</td>
<td>Slower</td>
</tr>
<tr>
<td>CAD integration</td>
<td>Cadence, LayoutEditor, custom</td>
<td>No</td>
<td>Cadence</td>
<td>No</td>
</tr>
<tr>
<td>Extras</td>
<td>Magnetic fields, current density, outputs to MATLAB</td>
<td>Current density</td>
<td>None</td>
<td>Current density</td>
</tr>
</tbody>
</table>

Success Story: Circuit Simulation and Optimization

- PSCAN2 works **x10 times faster** than the industry standard Spectre adopted to SFQ design while handling large complexity circuits (~10^{3-4} JJs).
- PSCAN2 development already used **>10x less funding** than was used for Spectre adaptation. The difference will be even greater with further development.

Graphical User Interface (GUI) for PSCAN2 and COWBOY optimizer
- Monte-Carlo optimizer can be easily added
Circuit Timing (Clocking Methods)

CMOS is a level logic: data are represented by voltage levels.

SFQ is a pulse logic: clock and data are represented by SFQ pulses in RSFQ, ERSFQ, eSFQ.

Should SFQ circuits follow the industry standards timing design (CMOS route) to make life easier?
Timing: Synchronous vs Wave Pipelined

Synchronous design – assumes simultaneous clock distribution

Natural for CMOS

Wave-Pipelined design - uses SFQ pulse propagation

Natural for SFQ

RESULT:
- x 8 smaller area
- x 7 less JJs

Make natural choices rather than copy alien technology solutions
Memory Lessons Learned

- **Memory**
 - SFQ Random Access Memory (RAM) to Magnetic RAM (MRAM)
 - Memory Element vs Memory Cell
 - Physics/MatScience vs Engineering
History of Josephson memories (only a selection)

1987 NEC Japan,
1024 bit NDRO Josephson memory

1999 NEC Japan, Dr. Nagasawa
4096 bit vortex transitional memory
256 x 16 bit organized
tested at 620 MHz
*S. Nagasawa et al., IEEE TAS, Vol. 9, No. 2, p. 3708, 1999

2000 ISTEC SRL Japan, Dr. Nagasawa
256 bit vortex transitional memory, all dc-powered

Main Problem: large memory cell size (SQUIDs are large) and ac power
Fast Magnetic Josephson Junction (MJJ)

Magnetization curve for SIsFS MJJ

- $I_{c0} = 2.35 \ mA$
- $I_{c1} = 1.88 \ mA$
- $I_{\text{read}} = 2.1 \ mA$

Memory Element Operation

Electrical Switching of SIsFS MJJs

- SIsFS MJJs have high $I_c R_N$ - electrically compatible to conventional JJs
- No need for readout SQUIDs, can be use to build SFQ circuits similar to JJs
- Simple fabrication: large element, single ferromagnetic layer
- Memory element min size ~1-2 μm. Limited scalability
- Nonvolatile storage

Courtesy of I. Vernik
Memory Element Based on a Pseudo-Spin-Valve-Barrier JJ

Device Structure:
JJ with two ferromagnetic barriers in series

![Diagram of memory element]

Magnetization States

“0”

“1”

Features:
• Demonstrated scalable switching of Jc
• Josephson phase can also switch between 0 & π
• Nonvolatile storage
• Demonstrated ΔJc/Jc up to 500 %
• Write: similar to MRAM (field or current)

Challenges:
• Write efficiency and speed
• Electrical properties not compatible to SIS JJs
• Need additional elements to construct memory cell

Courtesy of B. Baek, S. Benz

Principle:
Exchange field effect on Josephson coupling
→ Jc(parallel) ≠ Jc(anti-parallel)
→ Also Phase(0 state) ≠ Phase(π state)

PSV

Nb

Free

Spacer

Hard

Nb

Memory Element vs Memory Cell

Physics vs Engineering

- Which memory element to choose for dense MRAM?
 - SIsFS is non-scalable below 1-2 μm
 - SFNFS PSV is scalable to nanoscale (e.g., below 0.1 μm)
 - The answer looks straightforward: SFNFS PSV

- Right? Wrong
- Memory element does not make Random Access Memory
- Addressable memory cell does
 - Memory Cell is a combination of a memory element and a cell selector to enable addressing in RAM array
 - Read/Write operation in RAM array should not cause half-select disturb in unselected memory cells
Memory Cell: Need for Cell Selector

- MJJ is programmable JJ – a nonvolatile memory element. But it is a two-terminal device without input/output isolation.
- For random access memory (RAM), one needs to address (select) an individual memory cell without disturbing neighboring cells in RAM array.
 - Needs a 3 terminal device with good Input/output isolation is required.

Example from room-temperature non-superconducting spintronic RAM (STT MRAM)

- Two-terminal memory element
- Isolating transistor – memory cell selector
Addressable Memory Cells from NGES

Memory cell is a magnetic tunnel junction with superconducting electrodes: underlining physics demonstrated on SFS Josephson junction

- memory state – critical current magnetic hysteresis
- write – spin reversal
- read – Josephson effect

Courtesy of A. Herr, D. Miller
nTron: Nanowire 3-terminal Device

Can be used for RAM as line drivers and memory cell selector

- Planar NbN or Nb, simple to fabricate
- SFQ compatible

Demonstrated:
- Comparator; 66nA grey zone
- Digital Logic, half adder
- 20x gain
- Good In/Out isolation
- High Z drive

50 ps risetime pulses, potential of 100s of MHz rep rate

Courtesy of K. Berggren, T. Ohki
Hybrid circuits with cryogenic magnetoresistive memory elements (JJ+metal spintronics)

- Memory cell based on spintronic elements with addition of JJs (for low impedance) or nanowire switches (for high impedance)
- Memory devices:
 - Cryogenic Spin Torque transfer (CST)
 - Cryogenic Spin Hall effect (CSHE) elements
- JJ periphery (address decoders, sense, etc.)
Memory Cell Scalability

- Memory element (SFNFS, etc.) occupies a small fraction of memory cell area (<10% at best)
 - This makes scalability of memory element hardly relevant for RAM array, memory element does not define memory cell size
 - Size of addressing elements (not memory element) in memory cell defines RAM density
 - Readout SQUIDs are much large then memory element
 - This makes size of MRAM cell close to the size of traditional Josephson memory
 - The only advantage left is nonvolatility (a small peanut)
Memory Cell: Integrated memory and readout element

Schematic view of a four-terminal SISF₁IF₂S device and its biasing

$I_c(H)$ dependence for the SIS junction while sweeping an external in-plane magnetic field in two opposite directions (five overlapped curves for five consecutive scans are shown).

$M(H)$ dependence at 10 K for 5 mm × 11 mm chip with unpatterned SISF₁IF₂S multilayer used to fabricate the four-terminal devices. $|M/M_{\text{max}}|$ has two considerably different values at $H=0$, which correlates with the $I_c(H)$ dependence.

Courtesy I. Nevirkovets
Conclusions

Lessons learned

- Transformation is always challenging and not straightforward
- Energy and speed remains the main strength of superconducting electronics
- Memory still needs solution
 - Must be based on strong engineering, not just on interesting physics
- Adequate design tools are critical to achieving complexity
 - many hidden problems which can be easily underestimated
Thank you
SFQ4ee 8-Nb-layer Process

SFQ5ee 8-Nb-layer Process

SFQ5ee Process Features
(Primary IARPA C3 process node)

- 10 kA/cm² (100 μA/μm²)
- Wafer size: 200-mm
- Min wiring feature size: 500 nm
- Min JJ size: 700 nm
- High Kinetic Inductance (HKI) layer: 8 pH/sq
- High Sheet Resistance (HSR) option: 6 Ω/sq

Courtesy of L. Johnson
HYPRES Integrated Memory Process (IMP)

First of its kind “Digital+” fabrication process
150 mm wafer process integrating SFQ circuits, nTrons and MRAM devices

ERSFQ features
- 10 kA/cm²
- 3 Ohms/sq
- 7 superconducting layers
- Min size 500 nm

nTron features
- Material = 15 nm thick NbN_x
- T_C = 12 K
- 10 – 30 nm gate size

MRAM features
- Orthogonal Spin Transfer (COST)
- Spin Hall Effect (CSHE)
- EBL defined nano-pillars
- Optimized for < 0.1 mA
HYPRES Integrated Memory Process (IMP)

Substrate

Nano-wire

M0 = 200 nm

M3 = 600 nm

JJs

For MRAM implementation in IARPA C3 program

Memory array
Vertical NbSi JJ Stacks

3-JJ stacks used in voltage standard circuits

Precise control of etch with laser endpoint

C_4F_8/SF_6 ICP/RIE etch yields vertical profile \rightarrow Uniformity of JJs in stack

1. Self-shunted NbSi JJs eliminate need for shunt resistors
2. Relatively thick barriers allow for uniform high-J_c JJs
3. Josephson kinetic inductance of NbSi JJ stacks can replace inductors

- Substantial increase in circuit density
- Eliminate parasitic inductances
- Increase operating margins and yield

Courtesy of S. Benz, D. Olaya
C3 program brought superconducting technology at HYPRES to the next level:

- **New design approaches dictated by complex IC**
 - New libraries (dense, easily customized)
 - New EDA tools (PSCAN2, InductEx)

- **New architecture solutions dictated by complex IC**
 - Wave-pipelining clocking
 - Current recycling

- **New fabrication processes**
 - Integrated Memory Process (IMP): SFQ + new devices
 - nTrons, high-kinetic inductors
 - Magnetic devices (CST, CSHE)
 - Superconducting–Ferromagnetic Transistors (SFT)
 - Proliferation of Chemical Mechanical Polishing (CMP) fabrication steps
 - Self-aligned contacts to nanopillars
 - Full planarization enabling >10 Nb layers stacks

- **New devices**
 - Memory SFT

Conclusions
Future supercomputer with superconducting fast nodes, quantum computing nodes, combined with conventional CMOS nodes.

Classical superconducting (SFQ) computing node – similar to conventional CMOS node, but faster (@20-60 GHz) connected to CMOS nodes using optics.

Quantum computing (QC) node – a nested system, in which the QC core is readout, controlled, loaded/unloaded, corrected using superconducting classical computing circuits, which in turn connected to SFQ and/or CMOS nodes using optics.

Note: Needs high data rate energy efficient optical data network
Two versions of new generation of RSFQ logic with zero static power dissipation $P_S = 0$:

- **ERSFQ - Adaptive average voltage balancing**
 - Preserves standard RSFQ cell design with exception of biasing network
 - Needs relatively large bias inductors (~300pH) – the area penalty will be avoided with more metal layers available
 - Natural first choice for implementation

- **eSFQ – Synchronous phase balancing**
 - Requires some re-optimization of standard RSFQ cell due to the required change of biasing point
 - No large bias inductors are required
 - Bias inductors can be formed by junction stacks to achieve ultimate circuit density
 - dc bias is delivered via clock distribution network
 - Ultimately more compact version
Superconducting-ferromagnetic transistor (SFT): SISFIFS; S, I, and F denote a superconductor, an insulator, and a ferromagnetic material, respectively. SIS and SFIFS junctions play a role of acceptor and injector, respectively.

Current gain $G = |\delta I_{ca}|/|\delta I_i|$ is up to 9.

Dependence of the SIS Josephson maximum current, I_{ca}, on the injection current, I_i for three nominally identical devices.