

Loss Analysis of a 3 MW HTS Ship Propulsion Motor

T. Yanamoto^{1,2}, M. Izumi², T. Oryu¹, Y. Murase¹

¹Corporate Technology Division,
Kawasaki Heavy Industries, Ltd. Akashi City,
Hyogo 673-8666, Japan

²Tokyo University of Marine Science and Technology,
Tokyo 135-8533, Japan

Outline

- Introduction
- Overview of 3 MW HTS motor
- Design for high efficiency
- How to analyze loss
- Details of loss
- Conclusion

Introduction

- Requirements for commercial ship propulsion
 - High efficiency
 - Compact
 - High reliability
 - o Low cost

- Developed a 1 MW HTS motor and a 3MW HTS motor
- Demonstrate high efficiency, high output density, and reliability
- Enhance the HTS motor design technology to further promote the commercialization
- Loss Analysis Improve the loss prediction method

3 MW HTS motor

- Radial-type field-winding synchronous motor
- HTS field coil
 - Coreless racetrack type
 - Cooling by Helium gas
- Armature coil
 - Copper wire winding
 - Nonmagnetic teeth
 - Cooling by air

Rated speed	160 rpm
Number of poles	6
Field coil windings	DI-BSCCO
Maximum field coil temperature	30 K
Dimensions	D 1.4 m×L 2.8

Test result

- Performance Test
 - measure the efficiency
 to draw a motor efficiency map
- 100-hour Endurance test
 - o AT rated power of 3 MW
- Variable-load Test
 - Simulate an emergency maneuver
- Track record
 - o Total operating hours at 3 MW: 106 H
- Inspection
 - Take the motor apart and inspect

Design of armature coil

- Numerous insulated copper wires
- Transposition winding
- Nonmagnetic teeth

Transposition connection

Design of HTS field coil

- Racetrack type with nonmagnetic core
- Magnetic flex deflector (MFD)

Magnetic flex deflector

Design of rotor structure

- Nickel-based superalloy torque tube
- FRP slide structure
- HTS current lead

Details of the analyzed loss

Friction and windage loss		
Iron loss		
Armature loss	Joule heating loss	
	Individual wire eddy current loss	
	Circulating eddy current loss	
Cooling loss	HTS field coil heating loss	
	Joule heating loss	
	Thermal conduction loss	
	Heat leak loss	
	Radiation loss, etc.	
Others	Stray load loss, etc.	

Open- and short-circuit test

Estimate the friction and windage loss

and the stray load loss

Open-circuit test result

Short-circuit test result

Non-rotating test

- Measure temperatures and voltages inside the rotor in order to accurately break down the cooling loss
- Measuring points
 - o Temperature at 65 Points
 - Voltage at 41 points
 - Current at one point

•: Temperature

: Voltage

Electromagnetic Analysis

Estimate the individual wire eddy current loss,
 the circulating eddy current loss, and the iron loss

Individual wire eddy current loss

Circulating eddy current loss

Iron loss

Details of loss at 3 MW

Details of cooling loss

Conclusion

- The loss was accurately broken down.
- The results close to those expected were obtained.
- The high efficiency design worked well.
- The accuracy of the loss prediction method was improved by this work.