

# **Good Morning!**







# A Novel Magnetic Bearing Using 2G Double Crossed Loops

Flávio Goulart dos Reis Martins

F. Sass, A. C. Ferreira, R. de Andrade Jr.

Abstract 2LO2-07

September 19<sup>th</sup>, 2017







### 1. Introduction

Research background

Motivations

Objectives

### 1.1. Background



Maglev Cobra is the Brazilian experimental SML vehicle

The first in the world to reach a full scale prototype status (2014)







### 1.1. Background



Levitation is achieved by the interaction between YBCO bulks in cryostats and a permanent magnet guideway (PMG).









# 1.1. Background



The bottom of each cryostat contains two lines of **12 YBCO bulks** centered above the PMG **flux shapers**.





Cryostat manufacturer: ATZ

(Adelwitz Technologiezentrum GmbH)





#### 1.2. Motivations



Maglev Cobra dependency to a single manufacturer motivates the search for technological soveregnty of its HTS levitation system!

Bulk YBCO technology lacks a quality-standard large scale production process.

**2G Tapes** on the other hand...

- Have various large-scale manufacturers worldwide
- Critical current densities have long surpassed bulks'





#### 1.2. Motivations



We believe that the **future** of HTS application relies on 2G tapes.

Based on this, we propose a **novel** HTS magnetic bearing based on these **tapes** aiming to the replacement of the present bulks on the *Maglev Cobra*.









In this work we are going to:

- Present the novel magnetic bearing topology;
- Design and manufacture small scale prototypes;
- Test the prototypes by levitation force measurements;
- Simulate via FEM and compare to measurements







### 2. The Double Crossed Loops Concept

Previous works

The DCL Coils

Prototype coils

### 2.1. Previous works



We introduced the *HTS Loops* (Single Loops) in 2015 Study on trapped magnetic field and levitation force





F. Sass, et al., "Persistent currents in a magnetic bearing with coated conductors", Journal of Applied Physics, v. 18, p. 203901, 2015.





#### 2.1. Previous works



When field-cooled, a HTS loop will work as a jointless HTS coil.

Persistent currents will oppose any magnetic field variation.



F. Sass, et al., "Persistent currents in a magnetic bearing with softed conductors", Journal of Applied Physics, v. 18, p. 203901, 2015.





### 2.1. Previous works



#### Problem of volume usage and assimetry:







### 2.2. The DCL Coils



A simple, yet efficient solution: The Double Crossed Loop (DCL)







#### 2.2. The DCL Coils



The idea is to replace the YBCO bulks by DCL coils in the Maglev Cobra cryostats:











Three **20 loop** coils were produced for this work:

one SL coil and two DCL coils

HTS 2G Tape: SuperPower SF12050 (2012)

Impregnation: Eutectic alloy (melting point < 100 °C)





### 2.3. The Prototype Coils



#### Three **20 loop** coils were produced for this work:









# 3. Results and Discussions

**Experimental Rig Setup** 

Coils ZFC Characterization

**Prototype Bearing Tests** 

Simulations

Comparisons

# 3.1. Experimental Rig Setup









### 3.2. Coils Characterization











Coil

### 3.3. Prototype Tests









#### 3.4. Simulations



#### Integral Equations (IE) solved by Finite Elements (FE) method



F. Grilli, et al., "Current Density Distribution in Multiple YBCO Coated Conductors by Coupled Integral Equations", IEEE Trans. App. Supercond., 2009





### 3.4. Simulations



#### Comparing measurements to simulations:







### 3.5. Comparisons



Levitation force / material consumption ratio:

- Previous works with stacked 2G tape segments: 1.71 N/m
- This work with DCLs: 10.70 N/m

Should be noted that the tape is an old version (2012) and the geometry is not optimized for this application.

There is plenty room for improvement!







# 4. Conclusions

### 4. Conclusions



A new SML bearing topology using 2G tapes was proposed.

Small scale prototypes were produced and sucessfully tested as a proof of concept.

Simulations were able to partially predict the bearing behavior but needs improvement. Deviations could be due to desconsidered coil heads border effects.





19/09/2017

#### 4. Conclusions



There are many possibilities yet to be studied in order to improve and optimize this new bearing proposal:

- Variations in geometry (stacking factor, flux linkage area, coil heads bending angle, etc...)
- Lateral force stability tests (indispensable for the bearing)
- Variations on the magnetic field topology
- Improve the simulation model





19/09/2017

21/21



### Thank you for your atention!



#### Flávio Goulart dos Reis Martins

flaviogrmartins@gmail.com



