

EPSRC Engineering and Physical Sciences Research Council SIEMENS Ingenuity for life

Spatial Distribution of Flexural Strength in Y-Ba-Cu-O Bulk Superconductors

Kai Yuan Huang (Danny)

Supervisor: Prof. David Cardwell

Bulk Superconductivity Group, University of Cambridge, UK

E-mail: kyh30@cam.ac.uk

- Introduction
- Mechanical Properties of Bulk Superconductors
- Three Point Bend Test Results
- Indirect Tensile Test Results
- Conclusions

Introduction

- Mechanical Properties of Bulk Superconductors
- Three Point Bend Test Results
- Indirect Tensile Test Results
- Conclusions

Introduction to Bulk Superconductors

- Large, single-grain (RE)BCO can be fabricated with high success rate (up to ~ 60 mm in diameter)
- A prominent application is as high-trapped-field magnets
- Maximum trapped field reported to date is **17.6 T** at 26 K between two 25 mm diameter GdBCO/Ag (*Durrell J H et al. 2014, Supercond. Sci. Technol. 27, 082001*)

Introduction to Bulk Superconductors

Ref: AMSC Northrop Grumman 21st Surface Navy Association National Symposium Zhou D et al. 2017 Appl. Phys. Lett.110 no. 6 p. 062601 Ogata M et al. 2016 Supercond. Sci. Technol. 29 054002

- Introduction
- Mechanical Properties of Bulk Superconductors
- Three Point Bend Test Results
- Indirect Tensile Test Results
- Conclusions

Mechanical Properties of Bulk Superconductors

- Significant tensile stresses due to large Lorentz force
- (RE)BCO inherently **brittle** due to multi-layered perovskite structure
- Crack formation has been observed during high-field magnetization (at an external field of ~ 8 T for non-reinforced YBCO bulks)

Field profile after cracking

Ref: Nariki S et al. 2005 Supercond. Sci. Technol. 18 S126

Mechanical Properties of Bulk Superconductors

The tensile strength places a limit on the maximum trapped field achievable

- Introduction
- Mechanical Properties of Bulk Superconductors
- Three Point Bend Test Results
- Indirect Tensile Test Results
- Conclusions

Three Point Bend Test - Method

- 1. 25 mm diameter 10 mm thick YBCO single grains via TSMG and TSIG
- Cut into bar specimens, of dimensions
 2 mm x 1.5 mm x 20 mm
- 3. Tensile stress applied along *ab* planes
- 4. Flexural strength σ_{f} :

 $\sigma_f = \frac{3PL}{2wt^2}$

- 60 measurements from 4 bulks*
- $\sigma_f = 49.3 \pm 12.7 \text{ MPa}$
- *m* = 4.46

Use m to quantify spread in σ_f
Where m is the Weibull modulus
Weibull statistics common for ceramics
In general, high Weibull modulus →
less scatter → more predictable and more reliable

*one of which was a commercially available bulk from CAN SUPERCONDUCTORS

- 60 measurements from 4 bulks
- $\sigma_f = 49.3 \pm 12.7 \text{ MPa}$
- *m* = 4.46
- But wide spread of σ_f is not entirely random
- Apparent low strength region in the centre
- Increasing strength with distance from seed

Cross-sectional view

- Variation in σ_f due to variations in local porosity and Y-211 content
- The microstructural variation with position is fairly reproducible (next slide)
- → So we believe σ_f has a positional-dependence

- Introduction
- Mechanical Properties of Bulk Superconductors
- Three Point Bend Test Results
- Indirect Tensile Test Results
- Conclusions

Indirect Tensile (Brazilian) Test - Method

So what is the **bulk-to-bulk variation**?

1.Compressed whole as-grown bulks

2.Compression induces perpendicular tensile stress across the centre

3. Indirect tensile strength σ_{ids} :

$$\sigma_{ids} = \frac{2P}{\pi Dt}$$

С

Indirect Tensile (Brazilian) Test

- Twelve 16 mm diameter YBCO from 3 production batches
- *m* = 8.76 (comparable to Al₂O₃ engineering ceramic) → high reliability and predictability
- *m* = 4.46 from earlier flexural strength results
- $\sigma_0 \approx 22$ MPa agrees well with $\sigma = 25$ MPa deduced by Fuchs et al.

Conclusions

The variation of the tensile strength:

1. Within a single bulk:

Large spread in strength (m = 4.46), but is not entirely random, i.e. follows microstructural variations

➔ New ideas for mechanical reinforcements

2. From bulk to bulk:

Much narrower scatter (m = 8.76), batch processing produces consistent overall mechanical strengths, with highly predictable failure probabilities

→ Sufficient mechanical reliability for application as trapped-field magnets

Acknowledgement

D. Zhou J. Srpčič Y. Shi D. K. Namburi A. Dennis M. D. Ainslie J. H. Durrell D. A. Cardwell

M. Boll R. Bause M. Filipenko

J. Plecháček

