Effects of Swift-Particle Irradiations on the Critical Current Density in FeSe Department of Applied Physics, The University of Tokyo T. Tamegai Y. Sun, A. Park, N. Ito, S. Pyon RIKEN T. Kambara National Institute for Radiological Sciences H. Kitamura CRIEPI A. Ichinose # Superconductivity in FeSe F. C. Hsu et al., PNAS 105, 14262 (2008). # Recent Topics in Fe(Te,Se) Superconductors high T_c SC in single layer FeSe D. Liu. et al., Nat. Commun. 3, 931 (2012). #### Recent Topics in Fe(Te,Se) Superconductors high J_c in Fe(Te,Se) coated conductor D. Liu. et al., Nat. Commun. 3, 931 (2012). W. D. Si. et al., Nat. Commun. 4, 1347 (2013). # Characterizations of FeSe Crystals Grown by KCl/AlCl₃ Y. Sun et al., PRB 92, 144509 (2015). • J_c is low, $J_c \sim 4 \times 10^4 \text{ A/cm}^2$ $J_{c} \sim 3 \times 10^{5} \text{ A/cm}^{2} : \text{Fe(Te,Se)}$ • For H//c, $J_c \sim H^{-\alpha}$ with $\alpha = 1.2$ $\alpha \sim 1/2$: (Ba,K)Fe₂As₂, Ba(Fe,Co)₂As₂ α =5/8 : strong pinning : correlated pinning $\alpha = 1$ # **Superconducting Properties of Post-Processed Fe(Te,Se)** # Analyses of Vortex Dynamics in High-Quality FeSe ### Introduction of Pinning Centers by Swift Particle Irradiations Heavy-ion irradiation Au, Xe, U Columnar defects Light-particle irradiation proton, neutron Point defects #### Introduction of Pinning Centers by Swift Particle Irradiations Heavy-ion irradiation Au, Xe, U Columnar defects Light-particle irradiation proton, neutron Point defects Introduce scatterings in the system T. Taen et al., PRB 88, 224514 (2013). #### **Effects of Proton Irradiation on FeSe** Y. Sun et al., APEX 8, 113102 (2015). - Columnar defects (CDs) are created by heavy-ion irradiation - J_c is enhanced by introducing CDs - Large J_c is sustained even at B_{Φ} = 10 T (averaging spacing between CDs ~ 14 nm) - Columnar defects (CDs) are created by heavy-ion irradiation - J_c is enhanced by introducing CDs - Large J_c is sustained even at B_{Φ} = 10 T (averaging spacing between CDs ~ 14 nm) - Columnar defects (CDs) are created by heavy-ion irradiation - J_c is enhanced by introducing CDs - Large J_c is sustained even at B_{Φ} = 10 T (averaging spacing between CDs ~ 14 nm) - J_c is suppressed at very large B_Φ # Crystal Structure and Columnar Defects after Irradiation in FeSe diameter ~ 10 nm # Crystal Structure and Columnar Defects after Irradiation in FeSe diameter ~ 10 nm T. Tamegai et al., SUST 25, 084008 (2012). $T_{\rm c}$ is suppressed with increasing B_{Φ} Y. Sun et al., PRB 95, 104514 (2017). $T_{\rm c}$ is suppressed with increasing B_{Φ} Y. Sun et al., PRB 95, 104514 (2017). # Comparison of Effects of 2.6 GeV U and 800 MeV Xe Irradiations # B_{Φ} -Dependence of $J_{\rm c}$ in FeSe #### Scaling of M-H Hysteresis Curves Good scaling of J_c at B_{Φ} < 1 T and B_{Φ} > 4 T Scaling of J_c breaks down at 1 T < B_{Φ} < 4 T Two strong pinnings, naturally-present and induced by CDs compete in FeSe with 1 T < B_{Φ} < 4 T Large self-field (~1 kG) in FeSe with 1 T < B_{Φ} < 4 T makes magnetic field dependence of J_c weaker at low temperatures $T_{\rm c}$ decreases almost linearly with $B_{\rm \Phi}$ $dT_{\rm c}/{\rm d}B_{\rm \Phi} \sim -0.5~{\rm K/T}$ $T_{\rm c}$ decreases almost linearly with $B_{\rm \Phi}$ $dT_{\rm c}/{\rm d}B_{\rm \Phi} \sim -0.08~{\rm K/T}$ $T_{\rm c}$ decreases almost linearly with $B_{\rm \Phi}$ $dT_{\rm c}/{\rm d}B_{\rm \Phi} \sim -0.5~{\rm K/T}$ $T_{\rm c}$ decreases almost linearly with $B_{\rm \Phi}$ $dT_{\rm c}/{\rm d}B_{\rm \Phi} \sim -0.08~{\rm K/T}$ Ideally CDs do not affect T_c Possible effect of secondary electrons Light particle irradiations do not suppress T_c in FeSe **electron** S. Teknowijoyo *et al.*, PRB **94**, 064512 (2016). proton Y. Sun *et al.*, unpublished. $T_{\rm c}$ decreases almost linearly with $B_{\rm \Phi}$ $dT_{\rm c}/{\rm d}B_{\rm \Phi} \sim -0.5~{\rm K/T}$ Ideally CDs do not affect T_c Possible effect of secondary electrons Light particle irradiations do not suppress T_c in FeSe electron S. Teknowijoyo *et al.*, PRB **94**, 064512 (2016). **proton** Y. Sun *et al.*, unpublished. $T_{\rm c}$ decreases almost linearly with $B_{\rm \Phi}$ $dT_{\rm c}/{\rm d}B_{\rm \Phi} \sim -0.08~{\rm K/T}$ VF ~ 40 % at B_{Φ} = 16 T (diameter of CD: 10 nm) Blue: SC region Red: Columnar defects $J_{\rm c}$ reaches the maximum at $B_{\rm \Phi} \sim 2~{\rm T}$ $J_c^{\text{max}} \sim 0.2 \text{ MA/cm}^2$ $J_{\rm c}$ reaches the maximum at $B_{\rm \Phi} \sim 20~{\rm T}$ $J_{\rm c}^{\rm max} \sim 15~{\rm MA/cm^2}$ Different pinning energy (U_p) , size of columnar defects (radius r), and optimal B_{Φ} (B_{Φ}') in FeSe and $(Ba,K)Fe_2As_2$ $$U_{\rm p} \sim \epsilon_0 \ln(r/\sqrt{2}\xi)$$ $J_{\rm c} = \frac{cU_{\rm p}}{\Phi_0 a_{\Phi}} = \frac{c}{\Phi_0 a_{\Phi}} \epsilon_0 \ln\left(\frac{r}{\sqrt{2}\xi}\right) \propto B_{\Phi}'^{1/2}/\lambda^{2}$ # Analyses of Vortex Dynamics in FeSe with CDs J_c evaluated generalized inversion scheme H. G. Schnack *et al.*, PRB **48**, 13178(R) (1993). At low B_{Φ} , $J_{c}(T)$ is dominated by δT_{c} -pinning At high B_{Φ} , $J_{c}(T)$ is dominated by δI -pinning #### Summary Effects of heavy-ion irradiations in high-quality FeSe single crystals are studied • T_c is suppressed monotonically with increasing B_{Φ} $$dT_c/dB_{\Phi} = -0.5 \text{ K/T } (2.6 \text{ GeV U})$$ • J_c reaches the maximum at $B_{\Phi} \sim 2$ T, and is suppressed above $B_{\Phi} = 2$ T $$J_c^{\text{max}} \sim 2x10^5 \text{ A/cm}^2 (2 \text{ K, sf})$$ • The behavior of J_c - B_{Φ} is similar to the case of 122-system with ~70 times difference in optimal B_{Φ} . Different condensation energy and size of columnar defects in 11 and 122 systems • δT_c -pinning and δI -pinning coexist in FeSe Pinning mechanism crossovers from δT_c -pinning at low B_{Φ} to δI -pinning at high B_{Φ} # END #### Effects of Light particle Irradiation on FeSe