Tailored design of vortex behaviour and its visualisation with high-speed magneto-optical video

Alexey V Pan

A. Jones, I. A. Golovchanskiy, S. A. Fedoseev, J. George, F. S. Wells, H. Hilgenkamp, S. Wilson

Thin Film Technology Group

Institute for Superconducting and Electronic Materials & School of Physics

University of Wollongong, Australia

UNIVERSITY OF WOLLONGONG AUSTRALIA

PLD YBCO film multilayering: An alternative to nano-doping

A.V. Pan, *APL* 88, 232506 (2006) A. V. Pan, *et al.*, *IEEE Trans. Appl. Supercond.* **17**, 3585 (2007)

Surface morphology of YBCO film

(Y/Nd)BCO multilayer

- Much smoother surface;
- 10% 30% denser films;
- Additional network of dislocations.

A.V. Pan et al, APL 88, 232506 (2006)

$J_{c}(B_{a})$ enhancement over the entire field range

- The J_c enhancement is by a factor of 2 to 3 in 1 µm thick multilayer compared to the monolayer film of the same thickness.
- J_c in the (Y/Nd)BCO multilayer is even larger than that in 0.4 µm thick films.

Quantitative pinning model on edge dislocations

• Edge dislocations appear due to the mismatch between the substrate and film crystal lattices.

• The network of domain walls is formed due to a large number of out-of-plane dislocations.

• Domain walls possess strong vortex pinning.

These are the main assumptions for the quantitative model based on extensive structural studies of YBCO films.

V. Pan et al., *PRB* **73**, 054508 (2006); V. Pan and A. V. Pan, Low Temp. Phys. **27**, 732 (2001); A. V. Pan, et al, *IEEE Trans. Appl. Supercond.*, **19**, 3391 (2009)

Quantitative pinning model on edge dislocations: Taking into account flux creep

• Pinning energy:

$$U = U_0 \frac{n_p}{n_v} K_{sh}(d, B_a)$$

- U_0 pinning energy of single vortex on one edge dislocation;
- d distance between edge dislocations
- Electric field dissipation caused by vortex creep:

$$\vec{E} = [\vec{V} \times \vec{B}_a]$$

Model equation

$$J_c(B_a, T, E_{cr}) = \alpha kT \sinh^{-1} \left[\frac{E_{cr}}{a_0(B_a)\nu_0 B_a} \exp\left(-\frac{U_0 \frac{n_p}{n_v}(B_a)K_{sh}(d, B_a)}{kT}\right) \right]$$

I. A. Golovchanskiy, et al., *Supercond. Sci. Technol.* **24**, 105020 (2011) *Physica C* **479**, 151 (2012)

Fitting the experiment

Fitting the experiment with the model

I. A. Golovchanskiy, A. V. Pan, et al. JAP 114, 163910 (2013); SUST 29, 075002 (2016).

Influence of vibration in applied magnetic fields

Can we visualise/design these behaviour?

Scanning SQUID Microscopy to see vortices:

with a SQUID scaning across a sample

im le

Measures magnetic field of vortices

where SQUID is Superconducting Quantum Interference Device.

Vortex Visualisation with SQUID Microscopy

Magnetic Field Image

Static imaging in the field is of the order of the **Earth** Field ~μT.

Vortices

Calculation

Current Image

F. S. Wells, A. V. Pan, et al., Scientific Reports 5, 8677 (2015)

Magneto Optical Imaging (MOI) of Flux Penetration

• MOI uses Faraday Effect to rotate the polarisation of linearly polarised light as it passes through the Faraday-active film.

• Our MOI setup [SUST 29, 035014 (2016)].

Video Snapshots

Ultra-Fast Evolution of Supercurrent Profiles

Transient <u>over-critical</u> currents up to 30% higher than that in the equilibrium

Transient behaviour relaxes to the expected Kim-like profile.

F. S. Wells, A. V. Pan, et al., Scientific Reports 7, 40235 (2017)

Tailored pinning: Vortex ratchets

• Potential map of the ratchet created using vortex-vortex interactions:

$$U^{\nu\nu}(r) = \frac{2\Phi_0^2}{4\pi\mu_0\lambda^2} K_0(r/\lambda)$$

• Dark zones are vortex traps.

Simulation of Vortex Dynamics. Vortex Diodes or Pumps

- Overdamped Langevin Dynamics
- Vortices are assumed to be particles in a viscous fluid:

$$m\ddot{r}_{i} = \sum_{i \neq j} F_{ij}^{\nu\nu} + F_{i}^{pinning} + F_{i}^{Lorentz} + F_{i}^{thermal} - \eta \dot{r}_{i}$$

- Assuming inertial mass (m) of vortices ~ 0, and
- T = 0 K for simplicity, we can solve:

$$\eta \dot{r_i} = \sum_{i \neq j} F_{ij}^{\nu\nu} + F_i^{pinning} + F_i^{Lorentz}$$

Simulation Results with One Vortex

Simulation Results with Eight Vortices

Large dots for fast visualisation of vortex behaviour

J. George, A. V. Pan, et al., Ann. Phys. 529, 1600283 (2017)

Inverted Graded

J_c Difference between the Post- and Pre-Patterned Films

J_c enhancement (+):

- ALL Graded
- Inverted Graded
- Non-Uniform with large spacings

J_c reduction (–):

- ALL Uniform
- Non-Uniform with small spacings

Overall:

By designing a pattern, J_c can be tuned!

J. George, A. V. Pan, et al., Ann. Phys. 529, 1600283 (2017)

Qualitative explanation

• Ratcheting

A. Palau et al, *Phys. Rev. B* **85** (2012) J. E. Villegas et al, *Science* **302**, 1188 (2003)

• The **non-uniform arrays** form non-Bean-like profiles with high vortex density regions and vortex "vacuum" regions.

• Obviously, the more penetration reminds the Bean profile, the smaller enhancement (or none at all) is obtained.

UNIVERSITY OF WOLLONGONG AUSTRALIA

Summary

- J_c strongly depends on how it measured, so "Physics" may suffer.
- By designing a pattern, J_c can be tuned!
- **Enhancement** for non-uniform arrays; **reduction** for uniform arrays.
- World-record ultra-fast dynamic MOI has been developed to test functionality of electronic devices.
- Overcritical currents of up to 30% higher than equilibrium critical currents have been observed.
- Low-field SQUID Microscopy shows random vortex glassy patterns.
- Vortex ratchets (i.e. vortex diodes and pumps) have been simulated.