Quantum Voltage Standard Developments at NIST

Sam Benz Superconductive Electronics Group National Institute of Standards and Technology Boulder, CO, USA

> 10 August 2017 EUCAS 2017, Geneva, Switzerland

NS **Applications of Josephson Voltage Standard Systems** Zener voltage Electrical power references standards calibration calibration DVM gain & linearity, ratio "Electronic" calibration kilogram 10 V PJVS Planck constant $2 \mu V QVNS$ AC voltmeters "Electronic" calibration thermometry Boltzmann AC voltage Impedance constant standards L, C, R calibration calibration

DC Voltage Artifact Standards Replaced by Josephson Standards

Electrochemical Battery Weston Cell Vary in time & with environmental conditions

quantum effects

Programmable Josephson Voltage Standard

Hamilton, Burroughs and Kautz, 1995

Fabrication & Design of Superconducting Circuits

- Uniform junctions & barrier materials
 - Nb JJs with Co-sputtered a-Nb_xSi_{1-x} Barriers
- Microwave circuit design
 - Lumped element inductors & capacitors, power Nb splitters, coplanar waveguides
- Packaging
 - Electrical and thermal power management

Olaya, IEEE Trans. Appl. Supercond. June 2009 Fox, IEEE Trans. Appl. Supercond. June 2015

Cryocooled PJVS System

- Integrated system
 - Bias electronics DC & microwave
 - Cryogenics
 - Superconducting devices
 - Turn-key integrated system
 - Automation software
 - Optimize & check quantum states, locking ranges
 - Performs measurements

Rüfenacht IEEE Trans. Inst. Meas., June 2015

4 K Cold plate

Compressor

Quantum Locking Ranges at 10 V

NIST

Josephson Arbitrary Waveform Synthesizer

- Digital-Analog converter
- Pulse biased
- Directly control every JJ pulse
- Bipolar waveforms with <u>three</u> quantum states:
 - − +1, 0, −1 pulses

Co-invented in 1995 by NIST & Westinghouse researchers,

H. Worsham, J.X. Przybysz, S. Benz, and C. Hamilton

Replace Voltage Calibrators with JAWS Sources

Statistical uncertainty below 10^{-7} for <u>1 V</u> JAWS intercomparisons Systematic errors are ~ 10^{-6} for frequencies > 10 kHz

1V RMS JAWS Chip and Circuit

Chip

51,240 total junctions in 4 arrays

- Pulses clocked at 15 GHz
- Synchronizes 770 x 10¹² quantum states/s
- Measure spectra with a 24-bit ADC digitizer

JAWS 2 V RMS Sine Wave

1 kHz sinewave 102,400 JJs with 2 chips

Nathan Flowers-Jacobs et al., IEEE Trans. Appl. Supercond., Feb. 2016

Locking Range of Quantum States

Difference from Sine Voltage

N. Flowers-Jacobs et al., IEEE Trans. Appl. Supercond., Sept. 2016

Impedance Comparisons with 2x JAWS Sources

- Voltage ratio can be set to any desired value and frequency
 - Eliminates many different transformers to match different impedance ratios
- Any impedance in the complex plane can be calibrated
 - Because the JAWS phases and amplitudes are programmable

Metrology for Communications and Advanced Computing

Christine Donnelly

Justus Brevik

Adam Sirois

1EP1-10 Nonlinear response of RF JAWS

SFQ RF synthesizer

- 4EP2-04 Metrology for Single Flux Quantum Electronics
- 4EP2-24 RF Waveform Synthesis with JAWS

Manuel Castellanos-Beltran 4EO1-08

