
Design and development of conduction cooled MgB2 magnets 

for 1.5 and 3.0T full body MRI systems  
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Outline 

 1.5 and 3.0 T MgB2 MRI  

• Magnet criteria and design choices 

• Magnetic design 

 Wire choice 

• Conduction cooling 

• Mechanical and thermal design 

• Quench protection 

• Persistent joints and switch 

• Design evaluation tests 

 Test coil 



Experience in conductor 

manufacturing, coil fabrication 

or both: 

• BSCCO 

• MgB2 

• Nb3Al 

• Nb3Sn 

• NbTi 

• Pnictides 

• YBCO 

• Other non-ferrous non-

superconducting 
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Superconductivity Industry Experience 

Processing equipment: 

• Wire drawing equipment and furnaces for R & D 

conductor development 

• Welded seam CTFF process for mono and multi-

filament wire (one shift 10,000 km/yr capacity) 

• Large capacity twisting 

• Wire-in-channel soldering 

• Insulation braiding 

• Coil winding capacity designed for strain-sensitive 

wire 
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• 60 cm warm bore (95 cm MgB2 magnet ID) 

• 1.55 m (1.5 T) and 1.82 m (3.0 T) bore length – windings region 

• < 10 ppm over a 45 cm DSV 

• 5 gauss line < 3 m from center (1.5 T); < 4 m (3.0 T)  

• Field temporal stability: drift < 0.1 ppm / hr 

• Designs assume the magnets operate in persistent mode 

• React-and-wind approach 

• Conduction cooled 

• 10 K operating temperature 

• Active quench protection system 

 

Magnet criteria and design choices 



1.5 & 3.0 T MgB2 magnet design properties 
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Strength

Type of Superconductor MgB2 design NbTi guideline MgB2 design NbTi guideline

Operating Temperature (K) 10 4.2 10 4.2

Amount of helium (bath cooling) (L) 0 1700 0 < 3000

Length (m) 1.55 1.25-1.70 1.81 1.60-1.80

Inner Diameter (m) 0.95 0.95

Outer Diameter (m) 1.94 1.90-2.10 2.01 1.90-2.10

Peak-to-peak non-uniformity at 45 cm DSV (ppm) 9.6 9.7

Radial 5 G footprint (m) 2.86 2.50 2.88 3.00

Axial 5 G  footprint (m) 2.72 4.00 3.45 5.00

Inductance (H) 72.2 276.1

Stored Energy (MJ) 2.28 2.00-4.00 8.8 10.00-15.00

Maximum Hoop Stress (MPa) 33.30 67.80

Peak Magnetic Field (T) 2.68 < 9.00
a 3.79 < 9.00

Coil operating current density J op coil (A mm
-2

) 116.23 < 250
a 116.9 < 250

Amp-length (kA km) 14.8 < 25.00 31.8 < 60.00

1.5T 3.0T

• The MgB2 MRI magnet designs allow for a 60 cm warm bore 

(leaving space for the coil formers, vacuum vessel, gradient coils and 

RF coils) and a length of less than 2 m.  
a The NbTi wire has a critical current density of 250 A mm−2 at a peak magnetic field strength of 9 T while measured at 4.2 K. The maximum value of Jcoil 

for such wire will be less than 250 A mm−2. 



• Both magnet designs use eight magnet coil bundles: 6 driving the 

main magnetic field and 2 at a larger radius acting as shielding 

coils. 

• Coil designs based on empirical formula Ic(B,T) of standard MgB2 

wire 

• Iop / Ic maximum 0.7 

MgB2 magnet design 1.5 T 3.0 T 

MgB2 wire type  A B 

Iop 251 252.5 

total wire length, km 59 125.8 

largest coil wire 
length, km 

12 26.1 

largest coil, layers 24 34 

largest coil, turns 161 247 

MgB2 coil geometry 
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MgB2 wire geometry and critical current 

Material Wire A Wire B

MgB2 10% 15%

Cu 27% 42%

Nb 24% 20%

Monel 39% 23%

1.2 mm x 1.8 mm including 

braided insulation and 

impregnated with epoxy 



MgB2 coil geometry 
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1.5 T 

3.0 T 

Iop = 251 A 

Iop = 252.5 A 

Nr layers x Nz turns 



1.5 T MgB2 magnetic design 

Magnetic field distribution 
2.68 T peak 

Hoop stress distribution 
33.30 MPa maximum 

• Strongest magnetic field on wire is located in bundle 3 

• Electromagnetic hoop stress resulting from Lorentz force calculated using 

Appleton method (ref: Caldwell J. Phys. Appl. Phys. 13 1379 & Baig Su.S.T. 27 125012) 



11 

DSV non-uniformity in ppm 
4.8 ppm maximum deviation 

1.5 T MgB2 magnetic design 

5 gauss footprint 

• Optimization method minimizes internal magnetic field moments for field 

homogeneity and minimizes external magnetic moments for limiting stray 

fields 

 



3.0 T MgB2 magnetic design 

Magnetic field distribution 
3.79 T peak 

Hoop stress distribution 
67.80 MPa maximum 

• Strongest magnetic field on wire is located in bundle 3 

• Maximum hoop stress occurs in bundle 3 

• 5.5 ppm maximum deviation 

• 5 G footprint bigger than 1.5 T design (still under 4 m) 



Conduction cooling 
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Cross section of the conduction cooling 

layout for the 1.5 T magnet design.   

• Individual coils of wire 

(red) are wound around a 

stainless steel former.   

• Copper straps connect 

the coils to copper 

cooling rings that are then 

connected to a 2-stage 

cryocooler.   

• Layers of superinsulation 

(yellow) are placed 

between the magnet 

assembly and the wall of 

the vacuum vessel. 
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• 60 K cold shield 

• Can use currently available 

cryocoolers for operating 

– first stage at 60 K  

– second stage at 4.2 K  

• Radiative heat load on magnet 

assembly using FEA (ANSYS) 

– RVE approach used for thermal 

conductivity of MgB2 wire+epoxy 

• Also consider heat loss from 

mechanical supports, leads, etc. 

• 56 W heat load at first stage 

• 0.6 W heat load at second 

stage 

1.95 K temperature difference in magnet assembly  

Conduction cooling 

1.5 T magnet design   
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Mechanical design 

Need to consider stress and strain during the manufacturing process and 

operation of magnet due to relative brittleness of MgB2  

• 0.4% strain limit failure  

• 0.2% safety factor strain 

limit criteria used 

• FEA based on homogenized 

model (RVE approach) to 

compute E, G, ν, α of MgB2 

wire+epoxy 

• Maximum strain of 0.048% 

at bundle 3 (0.067% for 3.0T 

magnet) 

• Stress / strain due to quench 

covered in later slide  
First principle strain after the winding, cooling and 

energizing of the coils for 1.5 T MgB2 magnet design 



1.5 T 3.0 T 1.5 T 

Quench propagation 
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B        A        B        

• MQE found by applying a 10mm x 2mm disturbance heater 

located on the outer surface of the coil.  Pulse length set to 0.5 

s.  Simulation time of 3 s. 

• For quench simulations, the wires are divided into small 

segments with the temperature and superconducting state of 

the segment recorded every 10 ms; the location of the leading 

edge of the quench as a function of time is measured. 

NZPV is in direction of current flow As compared to NbTi: 

• 1-10 mJ MQE 

• 10-50 m/s NZPV 
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Active quench protection 

• The slower NZPV of MgB2 makes it 

harder to protect such a magnet during a 

quench: contributes to a faster rise in 

temperature at the location of the 

quenched hot spot. 

• Intentionally quench as much of the 

magnet as quickly as possible in order to 

distribute magnetic energy as evenly as 

possible. 

• Set of quench heaters on each coil that 

are powered by a charged capacitor.  The 

switch to the capacitor is activated by the 

detection of a small voltage (∼100mV) 

developed across one of the coils. 

• Heaters are placed around the outside of 

the coils 

Schematic of an active 

quench protection system  



Quench simulations 
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• The maximum temperature in 

each coil bundle as a function of 

time for the 1.5 T magnet design. 

The quench protection is 

triggered when the voltage on 

coil 1 reaches 100 mV.  

• For the 1.5 T magnet, the 

maximum temperature rise can 

be kept below 200 K by 

injecting a total of 34.4 kJ into 

the outer layers of the coils 

within 0.2 s. 
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Strains and stresses calculated in ANSYS during the quench simulation of the 1.5 T 

magnet: tensile in MgB2 (left); shear in epoxy (right) 

Quench simulations 

3.0 T magnet:   max strain in MgB2 = 0.0697 

  max shear stress in epoxy = 44 MPa 



Protocol:  

I. Use NbTi coil to generate Bloop (I = 20 A) 

II. Increase the Bext to 3 T (pushes joint > SC) 

III. Drop Bext to 0.  

IV. Turn off NbTi coil rapidly. 

 

Note: Only the field in step IV indicates the field 

generated by the test joint.  

 

• Blue curve at right  shows current change in 

the NbTi coil.  

• Red curve indicates the field reading by the 

Hall sensor.  

• Expansion of decay region shown in green 

insert box 

• Thus, a decay rig was needed, as well as some 

initial testing and verification using NbTi test 

joints. 

Decay measurements of persistent joints 
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• While further improvement in critical current of joints is still in process, it is important to 

measure R at values below 10-10 ohm 
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Decay of persistent current in MgB2 W&R 

style joint at zero applied field (4.2 K) 

Initial persistent current as a function of 

field at 4.2 K 

Persistent joint measurements 

 = 3.7 x 105 sec 

R = 4 x 10-12  

B = 3 T 

 = 2.5 x 105 sec 

R = 3.8 x 10-11  

Need both side-to-side and end-to-end 
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• Copper bobbin 

• Non-inductive wrapping 

• Close-packed winding 

• CuNi matrix MgB2 wire 

• Shunt current fraction 0.1% 

• Rswitch = 10.0 Ω (1.5 T); = 38.3 Ω (3.0 T) 

During charging of magnet 

Persistent switch for MgB2 MRI magnet system 

For 1.5 T MRI, and switch operating at 60 K: 

• Coil OD = 28.8 cm; coil height = 10 cm 

• Wire resistivity = 34.4 nΩ-m 

• Wire length = 229 m 

• Ramp-up heater = 10 W 

• Ramp-up time = 37 min 

• Cool-down time = 70 min 

PCS circuit when heater is removed 
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Test coil for validating model 
• React-and-wind, conduction-cooled segment coil is under testing. 

– Conduction cooled via two Sumitomo cryocoolers with 1.5 W each at 4 K. 

– Spot heaters are used to induce quenches for normal zone propagation properties studies. 

– A coil protection structure was embedded into the coil perimeter which is fired upon quench 

detection. 

• Iop = 200 A  

• Bw = 1.5 T (20 K) 

• Coil OD = 0.86 m  

• Coil height = 5.1 cm 

• 636 turns 

• 22 layers 

• 29 turns/layer 

• Conductor length = 1744 m 



                                                                             

---- thank you for your attention 
 



                                                                             

---- extry slides 
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Homogenized model - RVE 

representative volume element (RVE)   
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Mechanical design 

• Need to consider stress and strain during the manufacturing process and 

operation of magnet due to relative brittleness of MgB2  

• 0.4% strain limit failure  

• 0.2% safety factor strain 

limit criteria used 

• FEA based on homogenized 

model (RVE approach) to 

compute E, G, ν, α of MgB2 

wire+epoxy 

• Maximum strain of 

0.048% at bundle 3 

(0.067% for 3.0T magnet) 

• Stress / strain due to 

quench covered in later 

slide  

First principle strain after the winding, cooling and 

energizing of the coils for 3.0 T MgB2 magnet design 



Quench simulations 
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• The maximum temperature in each 

coil bundle as a function of time for 

the 3.0 T magnet design. The quench 

protection is triggered when the 

voltage on coil 1 reaches 100 mV.  
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Loss contributions 

• Hysteretic  ► Filament diameter deff  = 10 m  

• Coupling  ► Lp = 5 mm;  

  ► Matrix resistivity eff  >> Cu  

• Transport current  ► Non-magnetic sheath materials 

Low AC loss MgB2 conductor development 
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3324-0.55mm-675C/60min-T-10mm

3324-0.55mm-675C/60min-T-20mm

3324-0.55mm-675C/60min-T-30mm

3324-0.55mm-675C/60min-T-50mm

3324-0.55mm-675C/60min-T-75mm

3324-0.55mm-675C/60min-T-100mm

3324-0.55mm-675C/60min-T-300mm

• Jc maintained with n filaments = 
100 – 300.  
 

• Jc measured with 10 μm filaments 
at 0.29 mm. Work progressing to 
get obtain 10 μm filaments with 
larger wire diameters. 
 

• Jc maintained with twist pitches as 
low as 5 mm.  

• Original goal was 10 μm filaments for stators in the 5-200 Hz range. 


