Design and development of conduction cooled MgB₂ magnets for 1.5 and 3.0T full body MRI systems

Partners and Collaborators

Tanvir Baig
Abdullah Al Amin
Robert J. Deissler
Laith Sabri
Charles Poole
Robert W. Brown
Ozan Akkus
Michael Martens

Matt Rindfleisch

Mike Tomsic
David Doll
Robert Mendris
CJ Thong
Xuan Peng

Mike Sumption Ted Collings Milan Majoros Danlu Zhang Chris Koyacs

Most recent papers on MRI applications using MgB₂:

- T. Baig, SuST 27 (2014) 125012 "Conduction cooled magnet design for 1.5 T, 3.0 T and 7.0 T MRI systems"
- *C. Poole*, SuST 29 (2016) 44003 "Numerical study on the quench propagation in a 1.5 T MgB₂ MRI magnet design with varied wire compositions"
- A. Amin, SuST 29 (2016) 55008 "A multiscale and multiphysics model of strain development in a 1.5 T MRI magnet designed with 36 filament composite MgB₂ superconducting wire"
- *T. Baig*, SuST *30* (*2017*) *043002* "Conceptual Designs of Conduction Cooled MgB₂ Magnets for 1.5 and 3.0 Tesla Full Body MRI Systems"

Supporting Agencies:

NIH State of Ohio DOE NASA

Outline

- Magnet criteria and design choices
- Magnetic design
 - Wire choice
- Conduction cooling
- Mechanical and thermal design
- Quench protection
- Persistent joints and switch
- Design evaluation tests
 - Test coil

Superconductivity Industry Experience

Experience in conductor manufacturing, coil fabrication or both:

- BSCCO
- MgB_2
- Nb₃Al
- Nb₃Sn
- NbTi
- Pnictides
- YBCO
- Other non-ferrous nonsuperconducting

Processing equipment:

- Wire drawing equipment and furnaces for R & D conductor development
- Welded seam CTFF process for mono and multifilament wire (one shift 10,000 km/yr capacity)
- Large capacity twisting
- Wire-in-channel soldering
- Insulation braiding
- Coil winding capacity designed for strain-sensitive wire

Magnet criteria and design choices

- 60 cm warm bore (95 cm MgB₂ magnet ID)
- I.55 m (I.5 T) and I.82 m (3.0 T) bore length windings region
- < 10 ppm over a 45 cm DSV
- 5 gauss line < 3 m from center (1.5 T); < 4 m (3.0 T)
- Field temporal stability: drift < 0.1 ppm / hr
- Designs assume the magnets operate in persistent mode
- React-and-wind approach
- Conduction cooled
- 10 K operating temperature
- Active quench protection system

1.5 & 3.0 T MgB₂ magnet design properties

Strength	1	1.5T	3.0T		
Type of Superconductor	MgB ₂ design	NbTi guideline	MgB ₂ design	NbTi guideline	
Operating Temperature (K)	10	4.2	10	4.2	
Amount of helium (bath cooling) (L)	0	1700	0	< 3000	
Length (m)	1.55	1.25-1.70	1.81	1.60-1.80	
Inner Diameter (m)	0.95		0.95		
Outer Diameter (m)	1.94	1.90-2.10	2.01	1.90-2.10	
Peak-to-peak non-uniformity at 45 cm DSV (ppm)	9.6		9.7		
Radial 5 G footprint (m)	2.86	2.50	2.88	3.00	
Axial 5 G footprint (m)	2.72	4.00	3.45	5.00	
Inductance (H)	72.2		276.1		
Stored Energy (MJ)	2.28	2.00-4.00	8.8	10.00-15.00	
Maximum Hoop Stress (MPa)	33.30		67.80		
Peak Magnetic Field (T)	2.68	$< 9.00^{a}$	3.79	< 9.00	
Coil operating current density $J_{\text{op coil}}$ (A mm ⁻²)	116.23	< 250 ^a	116.9	< 250	
Amp-length (kA km)	14.8	< 25.00	31.8	< 60.00	

 The MgB₂ MRI magnet designs allow for a 60 cm warm bore (leaving space for the coil formers, vacuum vessel, gradient coils and RF coils) and a length of less than 2 m.

a The NbTi wire has a critical current density of 250 A mm⁻² at a peak magnetic field strength of 9 T while measured at 4.2 K. The maximum value of J_{coil} for such wire will be less than 250 A mm⁻².

MgB₂ coil geometry

- Both magnet designs use eight magnet coil bundles: 6 driving the main magnetic field and 2 at a larger radius acting as shielding coils.
- Coil designs based on empirical formula $I_c(B,T)$ of standard MgB₂ wire
- I_{op} / I_c maximum 0.7

MgB ₂ magnet design	1.5 T	3.0 T
MgB ₂ wire type	Α	В
$oldsymbol{I_{op}}$	251	252.5
total wire length, km	59	125.8
largest coil wire length, km	12	26.1
largest coil, layers	24	34
largest coil, turns	161	247

MgB₂ wire geometry and critical current

Material	Wire A	Wire B
MgB_2	10%	15%
Cu	27%	42%
Nb	24%	20%
Monel	39%	23%

MgB₂ coil geometry

1.5 T

Coil	Polarity	$r_{\rm c}$ (m)	$z_{\rm c}$ (m)	N_r	N_z	$B_{\rm max}$ (T)	$I_{ m op}/I_{ m c}$	Length (km)
1	+	0.4978 416 045	0.082 882 2977	20	50	2.0455	0.407	3.13
2	+	0.496 704 1066	0.275 187 6475	21	66	2.1404	0.427	4.32
3	+	0.493 385 2656	0.630 551 4912	24	161	2.6869	0.562	12.0
4	_	0.962 692 7812	0.690 722 3289	19	88	1.9972	0.398	10.1
5	+	0.497 841 6045	-0.0828822977	20	50	2.0455	0.407	3.13
6	+	0.496 704 1066	$-0.275\ 187\ 6475$	21	66	2.1404	0.427	4.32
7	+	0.493 385 2656	-0.6305514912	24	161	2.6869	0.562	12.0
8	_	0.962 692 7812	-0.6907223289	19	88	1.9972	0.398	10.1

$$I_{op}$$
 = 251 A

3.0 T

Coil	Polarity	$r_{\rm c}$ (m)	z_c (m)	N_r	N_z	$B_{\rm max}({\rm T})$	$I_{ m op}/I_{ m c}$	Length (km)
1	+	0.501 341 5842	0.081 080 8345	35	54	3.6936	0.628	5.95
2	+	0.506 790 4825	0.280 840 3580	33	92	3.6283	0.608	9.67
3	+	0.495 230 8503	0.684 796 3476	34	247	3.7978	0.663	26.1
4	_	0.993 824 9996	0.702 064 3276	24	141	2.7592	0.391	21.1
5	+	0.501 341 5842	-0.0810808345	35	54	3.6936	0.628	5.95
6	+	0.506 790 4825	-0.2808403580	33	92	3.6283	0.608	9.67
7	+	0.495 230 8503	-0.6847963476	34	247	3.7978	0.663	26.1
8	_	0.993 824 9996	-0.7020643276	24	141	2.7592	0.391	21.1

$$I_{op}$$
 = 252.5 A

1.5 T MgB₂ magnetic design

34 32 30 8 28 26 26 24 0.4 0.6 0.8 1 Radial direction (m)

Magnetic field distribution 2.68 T peak

Hoop stress distribution 33.30 MPa maximum

- Strongest magnetic field on wire is located in bundle 3
- Electromagnetic hoop stress resulting from Lorentz force calculated using Appleton method (ref: Caldwell *J. Phys. Appl. Phys.* 13 1379 & Baig Su.S.T. 27 125012)

1.5 T MgB₂ magnetic design

DSV non-uniformity in ppm 4.8 ppm maximum deviation

5 gauss footprint

 Optimization method minimizes internal magnetic field moments for field homogeneity and minimizes external magnetic moments for limiting stray fields

3.0 T MgB₂ magnetic design

Magnetic field distribution 3.79 T peak

Hoop stress distribution 67.80 MPa maximum

- Strongest magnetic field on wire is located in bundle 3
- Maximum hoop stress occurs in bundle 3
- 5.5 ppm maximum deviation
- 5 G footprint bigger than 1.5 T design (still under 4 m)

Conduction cooling

Cross section of the conduction cooling layout for the 1.5 T magnet design.

- Individual coils of wire (red) are wound around a stainless steel former.
- Copper straps connect the coils to copper cooling rings that are then connected to a 2-stage cryocooler.
- Layers of superinsulation (yellow) are placed between the magnet assembly and the wall of the vacuum vessel.

Conduction cooling

Type: Temperature Unit: K

I.5 T magnet design

- 60 K cold shield
- Can use currently available cryocoolers for operating
 - first stage at 60 K
 - second stage at 4.2 K
- Radiative heat load on magnet assembly using FEA (ANSYS)
 - RVE approach used for thermal conductivity of MgB₂ wire+epoxy
- Also consider heat loss from mechanical supports, leads, etc.
- 56 W heat load at first stage
- 0.6 W heat load at second stage

1.95 K temperature difference in magnet assembly

Mechanical design

Need to consider stress and strain during the manufacturing process and operation of magnet due to relative brittleness of MgB₂

First principle strain after the winding, cooling and energizing of the coils for 1.5 T MgB₂ magnet design

- 0.4% strain limit failure
- 0.2% safety factor strain limit criteria used
- FEA based on homogenized model (RVE approach) to compute E, G, v, α of MgB₂ wire+epoxy
- Maximum strain of 0.048% at bundle 3 (0.067% for 3.0T magnet)
- Stress / strain due to quench covered in later slide

Quench propagation

	1.5 T		1.	.5 T	3.0 T	
	Wire A $T_{\rm op} =$	(at : 10 K)	Wire B $T_{\rm op} =$	(at = 10 K)	Wire B $T_{\rm op} =$	(at 10 K)
Quench location	^a Coil 1	^b Coil 3	^a Coil 1	^b Coil 3	^a Coil 1	^b Coil 3
$I/I_{\rm c}$	0.227	0.562	0.151	0.375	0.188	0.663
MQE (J)	1.56	0.51	3.49	1.41	3.07	0.40
NZPV (cm s ⁻¹)	9.33	33.78	8.36	24.50	10.16	58.40

a On coil surface.

NZPV is in direction of current flow

- MQE found by applying a 10mm x 2mm disturbance heater located on the outer surface of the coil. Pulse length set to 0.5 s. Simulation time of 3 s.
- For quench simulations, the wires are divided into small segments with the temperature and superconducting state of the segment recorded every 10 ms; the location of the leading edge of the quench as a function of time is measured.

As compared to NbTi:

- I-I0 mJ MQE
- 10-50 m/s NZPV

^b At location of B_{max} .

Active quench protection

Schematic of an active quench protection system

- The slower NZPV of MgB₂ makes it harder to protect such a magnet during a quench: contributes to a faster rise in temperature at the location of the quenched hot spot.
- Intentionally quench as much of the magnet as quickly as possible in order to distribute magnetic energy as evenly as possible.
- Set of quench heaters on each coil that are powered by a charged capacitor. The switch to the capacitor is activated by the detection of a small voltage (~100mV) developed across one of the coils.
- Heaters are placed around the outside of the coils

Quench simulations

- The maximum temperature in each coil bundle as a function of time for the 1.5 T magnet design. The quench protection is triggered when the voltage on coil I reaches 100 mV.
- For the I.5 T magnet, the maximum temperature rise can be kept below 200 K by injecting a total of 34.4 kJ into the outer layers of the coils within 0.2 s.

Quench simulations

Strains and stresses calculated in ANSYS during the quench simulation of the 1.5 T magnet: tensile in MgB₂ (left); shear in epoxy (right)

3.0 T magnet:

max strain in $MgB_2 = 0.0697$ max shear stress in epoxy = 44 MPa

Decay measurements of persistent joints

- While further improvement in critical current of joints is still in process, it is important to measure R at values below 10^{-10} ohm
- Thus, a decay rig was needed, as well as some initial testing and verification using NbTi test joints.

Protocol:

- I. Use NbTi coil to generate B_{loop} (I = 20 A)
- II. Increase the B_{ext} to 3 T (pushes joint > SC)
- III. Drop B_{ext} to 0.
- IV. Turn off NbTi coil rapidly.

Note: Only the field in step IV indicates the field generated by the test joint.

- Blue curve at right shows current change in the NbTi coil.
- Red curve indicates the field reading by the Hall sensor.
- Expansion of decay region shown in green insert box

Persistent joint measurements

Decay of persistent current in MgB₂ W&R style joint at zero applied field (4.2 K)

Need both side-to-side and end-to-end

Initial persistent current as a function of field at 4.2 K

Persistent switch for MgB₂ MRI magnet system

During charging of magnet

PCS circuit when heater is removed

- Copper bobbin
- · Non-inductive wrapping
- Close-packed winding
- CuNi matrix MgB₂ wire
- Shunt current fraction 0.1%
- $R_{\text{switch}} = 10.0 \Omega (1.5 \text{ T}); = 38.3 \Omega (3.0 \text{ T})$

For I.5 T MRI, and switch operating at 60 K:

- Coil OD = 28.8 cm; coil height = 10 cm
- Wire resistivity = 34.4 n Ω -m
- Wire length = 229 m
- Ramp-up heater = I0W
- Ramp-up time = 37 min
- Cool-down time = 70 min

Test coil for validating model

- React-and-wind, conduction-cooled segment coil is under testing.
 - Conduction cooled via two Sumitomo cryocoolers with 1.5 W each at 4 K.
 - Spot heaters are used to induce quenches for normal zone propagation properties studies.
 - A coil protection structure was embedded into the coil perimeter which is fired upon quench detection.

- $I_{ob} = 200 \,\text{A}$
- $B_w = 1.5 \text{ T} (20 \text{ K})$
- Coil OD = 0.86 m
- Coil height = 5.1 cm
- 636 turns
- 22 layers
- 29 turns/layer
- Conductor length = 1744 m

---- thank you for your attention

--- extry slides

Homogenized model - RVE

Modulus of elasticity (θ direction)	112 GPa	112 GPa
Modulus of elasticity (z direction)	57.9 GPa	57.8 GPa
Modulus of elasticity (r direction)	59.6 GPa	59.5 GPa
Shear modulus $(G_{\theta z})$	17.5 GPa	17.9 GPa
Shear modulus (G_{zr})	13.4 GPa	13.3 GPa
Shear modulus $(G_{r\theta})$	18 GPa	17.4 GPa
Poisson's ratio $(\nu_{\theta z})$	0.26	0.259
Poisson's ratio (ν_{zr})	0.288	0.288
Poisson's ratio $(\nu_{r\theta})$	0.255	0.254
Average thermal expansion coefficient (10–298 K) (α_1)	$10.1 \ \mu \mathrm{m \ m}^{-1} \ \mathrm{K}^{-1}$	9.32 $\mu \text{m m}^{-1} \text{ K}^{-1}$
Average thermal expansion coefficient (α_2)	$12.9~\mu \mathrm{m}~\mathrm{m}^{-1}~\mathrm{K}^{-1}$	$12.5 \mu \mathrm{m \ m^{-1} \ K^{-1}}$
Average thermal expansion coefficient (α_3)	$12.6 \ \mu \mathrm{m \ m^{-1} \ K^{-1}}$	12.3 $\mu \text{m m}^{-1} \text{ K}^{-1}$

Mechanical design

 Need to consider stress and strain during the manufacturing process and operation of magnet due to relative brittleness of MgB₂

First principle strain after the winding, cooling and energizing of the coils for 3.0 T MgB₂ magnet design

- 0.4% strain limit failure
- 0.2% safety factor strain limit criteria used
- FEA based on homogenized model (RVE approach) to compute E, G, v, α of MgB₂ wire+epoxy
- Maximum strain of 0.048% at bundle 3 (0.067% for 3.0T magnet)
- Stress / strain due to quench covered in later slide

Quench simulations

 The maximum temperature in each coil bundle as a function of time for the 3.0 T magnet design. The quench protection is triggered when the voltage on coil I reaches 100 mV.

Low AC loss MgB₂ conductor development

• Original goal was 10 μm filaments for stators in the 5-200 Hz range.

Loss contributions

- Hysteretic
- Filament diameter $d_{eff} = 10 \, \mu \text{m}$

Coupling

- $ightharpoonup L_p = 5 \text{ mm};$
- ightharpoonup Matrix resistivity $\rho_{eff} >> Cu$
- Transport current ► Non-magnetic sheath materials

- J_c maintained with n filaments = 100 - 300.
- J_c measured with 10 μm filaments at 0.29 mm. Work progressing to get obtain 10 µm filaments with larger wire diameters.
- *J_c* maintained with twist pitches as low as 5 mm.

