

Flux pinning behaviour of a $BaFe_2(As_{1-x}P_x)_2$ thin film on IBAD-MgO technical substrate

K. lida¹, H. Sato², C. Tarantini³, <u>J. Hänisch⁴</u>, J. Jaroszynski³, H. Hiramatsu², B. Holzapfel⁴, H. Hosono²

¹ Nagoya University, ² Tokyo Inst. Techn., ³ NHMFL Tallahassee, ⁴ Karlsruhe Inst. Techn.

INSTITUTE FOR TECHNICAL PHYSICS, SUPERCONDUCTING MATERIALS AND APPLICATIONS

Supported by Kakenhi (16H04646, 25709058, 25106007) 秋硕費 NSF (DMR-1157490) (颜, and State of Florida

www.kit.edu

Ba-122: Grain Boundaries

Co or P-doped Ba-122

Fe(Se,Te)

- Large $\theta_{\rm c}$ (~9°)
- Gentle slope
- Suitable for wire applications
- Wide experimental range for LAGB studies

Katase *et al., Nat. Commun.* 2, 409 (2011)
 Si *et al., Appl. Phys. Lett.* 106, 032602 (2015)
 Hilgenkamp, Mannhart, *Rev. Mod. Phys.* 74, 485 (2002)
 Sakagami *et al., Physica C* 494, 181-184 (2013)

IBAD Architecture and Texture Quality

Both with
$$\Delta \phi < \theta_c \sim 9^{\circ}$$

High density of defects

Low density of defects

Sato et al., Sci. Rep. 6, 36828 (2016).

4 19.09.2017 Jens Hänisch - Grain boundaries and pinning in a $BaFe_2(As_{1-x}P_x)_2$ thin film on IBAD-MgO technical substrate

INSTITUTE FOR TECHNICAL PHYSICS SUPERCONDUCTING MATERIALS AND APPLICATIONS

Possible Grain Boundary Pinning

Film with poorer texture quality:

- Lower T_c (possible strain effect)
- Higher in-field J_c

Possible grain boundary pinning

Similar behaviour was seen for Co-Ba122/IBAD-MgO

Katase et al., APL 98, 242510 (2011)

Sato et al., Sci. Rep. 6, 36828 (2016).

19.09.2017 Jens Hänisch - Grain boundaries and pinning in a $BaFe_2(As_{1-x}P_x)_2$ thin film on IBAD-MgO technical substrate

5

Clarifying pinning behaviour of grain boundary networks in Fe-based superconductors by investigating in-field J_c properties of a T_c -enhanced P-doped Ba-122 CC

Sample Preparation

INSTITUTE FOR TECHNICAL PHYSICS SUPERCONDUCTING MATERIALS AND APPLICATIONS

19.09.2017 Jens Hänisch - Grain boundaries and pinning in a $BaFe_2(As_{1-x}P_x)_2$ thin film on IBAD-MgO technical substrate

Epitaxial Growth

— Epitaxial film

- No impurities
- 00/ oriented
- Fourfold symmetry
- No rotated grains
- Sharply out-of-plane textured
- $\Delta \phi$ less than $heta_{
 m c}$ (~9°)

lida et al, Sci. Rep. 10, 39951 (2017).

INSTITUTE FOR TECHNICAL PHYSICS SUPERCONDUCTING MATERIALS AND APPLICATIONS

9 19.09.2017 Jens Hänisch - Grain boundaries and pinning in a $BaFe_2(As_{1-x}P_x)_2$ thin film on IBAD-MgO technical substrate

Magnetic Field Dependence of J_c

- High performance P:Ba-122 CC

- Self-field J_c @4.2 K over 4 MA/cm²
- Slightly anisotropic ($\gamma_{Hirr} \simeq 1.3 1.7$)
- Superior to MgB₂ and NbTi
- Comparable to Nb₃Sn above 20 T

Pinning Potential and B-T Phase Diagram

• Pinning potential in expected range for Ba122

- Small vortex liquid region
- *H*_{irr} up to 50 / 60 T
- Slightly anisotropic ($\gamma_{Hirr} \simeq 1.3 1.7$)

E(J) Characteristics

12

In-field transport

- Non-Ohmic linear differential (NOLD) signature up to 10 T
 - $\rightarrow J_{\rm c}$ limitation by grain boundaries
- Power-law behaviour above 12.5 T
 - $\rightarrow J_c$ limitation by intra-grain depinning of flux lines

Angular Dependence of J_c

lida et al, Sci. Rep. 10, 39951 (2017)

INSTITUTE FOR TECHNICAL PHYSICS SUPERCONDUCTING MATERIALS AND APPLICATIONS

19.09.2017 Jens Hänisch - Grain boundaries and pinning in a $BaFe_2(As_{1-x}P_x)_2$ thin film on IBAD-MgO technical substrate

13

Angular Dependence of J_c

$$H_{c2}(\theta) = H_{c2}^{c}/F(\theta)$$
$$F(\theta, \gamma_{Hc2}, \delta) = (|\cos \theta|^{\delta} + \gamma_{Hc2}^{-\delta}|\sin \theta|^{\delta})^{1/\delta}$$

See also: J. Hänisch et al., Sci. Rep. 5, 17363(2015)

Angular Dependence of J_c

- Two distinct peaks at *H*||*c* and *ab*
- *ab*-peak: fully determined by
 *H*_{c2} anisotropy

10⁵

10⁴

10³

10²

90

 $J_{\rm c}~({\rm A/cm}^2)$

θ (°)

d)

c-axis peak: due to network of threading dislocations comprising the LAGBs

T=20 K

120 150 180 210

θ (°)

INSTITUTE FOR TECHNICAL PHYSICS SUPERCONDUCTING MATERIALS AND APPLICATIONS

θ (°)

15

Pinning Force Density for B || c

Planar defects Line defect arrays

Point-like pinning

*f*_p data fall onto the master curve
 of GB pinning for *H* || *c*

lida et al, Sci. Rep. 10, 39951 (2017).

Summary

- P-doped BaFe₂As₂ coated conductor samples realized by PLD
- *T*_c increased up to 28 K by optimising growth condition
- NOLD signature at low fields due to J_c limitation by GBs \rightarrow crossover field
 - GBs act as flux pinning centers, justified by J_c scaling and F_p analyses
 - *c*-axis peak: GB pinning,
 ab peak : *H*_{c2} anisotropy

Pinning Force Density for B || ab

Planar defects Line defects array

Point-like pinning

- f_p follows GB pinning @ 10 and 15 K
- *f*_p neither follows GB nor point-likepinning for *h* > 2 at 20 K
- 4 K: point like pinning
- Dominant pinning mechanism changes with *T* for *H*||*ab*

lida et al, Sci. Rep. 10, 39951 (2017).

19.09.2017 Jens Hänisch - Grain boundaries and pinning in a $BaFe_2(As_{1-x}P_x)_2$ thin film on IBAD-MgO technical substrate INSTITUTE FOR TECHNICAL PHYSICS SUPERCONDUCTING MATERIALS AND APPLICATIONS

MBE-grown P:Ba122/MgO

INSTITUTE FOR TECHNICAL PHYSICS SUPERCONDUCTING MATERIALS AND APPLICATIONS

20 19.09.2017 Jens Hänisch - Grain boundaries and pinning in a $BaFe_2(As_{1-x}P_x)_2$ thin film on IBAD-MgO technical substrate