

superior performance. powerful technology.

Progress of Wire Development and Process Improvement on 2G HTS at SuperPower

Drew W. Hazelton, Ryusuke Nakasaki, Satoshi Yamano, Masayasu Kasahara, Aarthi Sundaram, Yifei Zhang

Presentation 2MO4-02 September 19, 2017

SuperPower's (RE)BCO superconductor with artificial pinning structure provides a solution for demanding applications

- Hastelloy® C276 substrate
 - high strength
 - high resistance
 - non-magnetic
- Buffer layers with IBAD-MgO
 - Diffusion barrier to metal substrate
 - Ideal lattice matching from substrate through REBCO
- MOCVD grown (RE)BCO layer with BZO nanorods
 - Flux pinning sites for high in-field I_c
- Silver and copper stabilization

2G HTS wire has been produced with continuous upgrades at the manufacturing facility since 2006

Recent step wise improvements to meet market challenges

Critical current

 Recent advances in processing have significantly increased the base I_c (77K, sf) of SP 2G HTS tapes into the 400-600 A/cm-w range

Piece length

 Recent advances in processing have also increased the stable production piece length of SP 2G HTS tapes ~300m to 500 m

Current density

- SP 2G HTS tapes have some of the highest conductor Je's in the industry
- New initiatives will continue to improve performance
 - Thinner substrates (>30% Jc improvements)
 - Improved lift factors (2x +) with enhanced pinning
 - Focus on three pinning regimes: 4K-high field, 20-50K moderate field, 65-77K low field.
- Continuous improvement of uniformity and reproducibility within and between run

Critical current vs. field: enhanced 7.5% Zr AP

Measurements made at Tohoku University

IcBT typical data

High field IcBT data on 7.5% Zr doped sample

Measured at Tohoku Univ

Comprehensive testing capabilities for mechanical and electromechanical properties

- Axial tensile test at room temperature or at 77K (with I_c)
 - Measurement of elastic modulus and yield stress
 - Determination of critical stress and irreversible stress (strain)
- Measurement of delamination strength various testing methods
 - Peel test: at room temperature and with varying peeling angle
 - Pin-pull (c-axis tensile) test: at room temperature
 - Anvil (c-axis tensile) test: at room temperature or at 77K (with I_c)
- Transverse (c-axis) compressive test at 77K (with I_c)
 - Measurement of critical compressive stress
- Torsion-tension test at 77K (with I_c)
 - Measurement of critical tensile stress under twist

Development progress of 30µm substrate

- Base performance of 30µm substrates are comparable to 50µm
- Routine production in place

Recently delivered ~500m length w/ lc >525A on 30 μ m substrate

CORC® Cables and Wires

Advanced Conductor Technologies

- Developing high-current CORC® cables and wires
- CORC® performance tailored to each application
- Rotating machines will focus on CORC® wires

CORC® cables

- Cable diameter 5 8 mm
- 20 30 mm twist pitch
- Wound from 4 mm wide tapes

CORC® wires

- Wire diameter 2.5 4.5 mm
- 6 10 mm twist pitch
- Wound from 2 mm wide tapes

TEM analysis for enhanced Zr doping

Size : 4.4~6.2nm Distance : 20.8~26.8nm

Size : 4.4~5.6nm Distance: 16~20.7nm

Size : 4.4~5.6nm Distance: 12.8~18.3nm

In-field performance at 30K/2T

15% Zr doping samples show higher I_c performance in mid-field

Long tapes with Zr = 15%

- Further work is underway before official release of Zr enhanced wires
 - Repeatability of I_c performance at 20~50K and 2T thru 5T
 - Dispersion of I_c performance
 - Mechanical property

Combination of $I_c(B,4K)$ measured in resistive and superconducting magnets

Below ≈2T 15% Zr tape has lower I_c than 7.5% Zr production line

Summary

- Strong focus on processing to improve uniformity, repeatability, piece lengths and yield.
- Maximize current capacity while developing next generation equipment
 - When is the time to pull the trigger?
- Enhance performance parameters for developing operating spaces
 - Thinner substrates
 - Thicker films
 - Optimized pinning
- Continue to improve mechanical properties
 - Delamination mitigation
 - Ic (ε)

superior performance. powerful technology.

Thank you for your attention

