

Developement of long-length BMO doped REBCO coated conductors by hot-wall PLD process

- S. Fujita, S. Muto, W. Hirata, Y. Adachi, T. Yoshida, M. Igarashi, K. Kakimoto, Y. Iijima, K. Naoe (Fujikura Ltd.),
- T. Kiss (Kyushu University),
- T. Okada, S. Awaji (HFLSM, IMR, Tohoku University)

A part of this work is based on results obtained from a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

OUTLINE

- Introduction
 - Production wire at Fujikura
 - Hot-wall PLD concept for BMO doped-REBCO
- Results
 - **Selection of materials**
 - Optimization of deposition condition
 - Thickness dependence of REBCO
 - Fabrication of a 300 m long wire
- Summary

OUTLINE

- Introduction
 - Production wire at Fujikura
 - Hot-wall PLD concept for BMO doped-REBCO
- Results
 - Selection of materials
 - Optimization of deposition condition
 - Thickness dependence of REBCO
 - Fabrication of a 300 m long wire
- Summary

Fujikura's REBCO coated conductor

Typical Specifications

Sutabilizer: electroplated copper

ltem	Width [mm]*	Thickness [mm]*	Substrate [µm]	Stabilizer [µm]	Critical Current (<i>I</i> _c) [A] (@77K, S.F.)
FYSC-SCH04	4	0.13	75	20 x 2	≧165
FYSC-SCH12	12	0.13	75	20 x 2	≧550

> Specifications above are just references.

<Schematic of 2G HTS wire (FYSC-SCH04)>

^{*} Dimensions do not include thickness of insulating tapes.

> If any questions or inquiries, please ask us detailed specifications.

Example data of longitudinal I_c distribution

Non-doped production wire with 4 mm-wide

■ 4-terminal method current conduction measurement at every 4.7m

■ Magnetic measurement @TapestarTM

quite uniform I_c with 600m length are obtained

Typical in-field I_c of a production wire

- > Example data of typical production wire
- > Sample : $I_c = 573 \text{ A}@77\text{K,s.f.} (/\text{cm-w}) (1.9 \mu\text{mt})$

Key techniques for REBCO wire fabrication

Ion Beam Assisted Deposition (IBAD)

with large ion source

with hot-wall heating

These techniques enable us to stably manufacture the high-performance and long-length REBCO wires.

BMO doping by Hot-wall PLD

Key issues for BMO doped REBCO wire are:

"High in-field I_c & Reproducibility" "Long-length & Longitudinal I_c uniformity"

Hot-wall PLD system realized:

- \triangleright High I_c by thickening REBCO layer
- ightharpoonup Excellent I_c uniformity by furnace-like stable substrate heating

Hot-wall PLD system is expected to overcome these issues.

OUTLINE

- Introduction
 - Production wire at Fujikura
 - Hot-wall PLD concept for BMO doped-REBCO
- Results
 - **Selection of materials**
 - Optimization of deposition condition
 - Thickness dependence of REBCO
 - Fabrication of a 300 m long wire
- Summary

Selection of materials

- Investigations on <u>RE element</u> and <u>BMO</u> by preliminary deposition condition of Hot-wall PLD.
 - GdBCO+5.0mol%BaZrO₃
 - GdBCO+3.5mol%BaHfO₃
 - EuBCO+3.5mol%BaHfO₃

BHO doped EuBCO showed higher J_c

→ We chose this combination

Y. Iijima et al., IEEE TAS vol. 27, no. 4, 6602804 (2017)

Optimization of deposition condition

■ Two types of optimized condition were found for BHO doped EuBCO.

Condition A: High J_c Growth rate ~ 5-7 nm/sec Thickness ~ 1 μ m

Condition B: High growth rate

Growth rate ~ 20-30 nm/sec Thickness ~ 2-2.5 μ m \rightarrow high " I_c "

Y. Iijima et al., IEEE TAS vol. 27, no. 4, 6602804 (2017)

Thickness dependence of BHO doped EuBCO

■ Several thickness samples were fabricated using the two optimized deposition condition A and B.

- REBCO thickness dependence of $I_c(77.3K,s.f.)$ is similar in both conditions.
- > 0.9 μ m thick sample of condition A shows quite large $F_p(4.2K)$, but over 2 μ m thick samples have similar value to those of condition B samples.

^{*} This work includes some data measured at HFLSM, IMR, Tohoku University.

TEM observation

* Different thickness samples with same depo. cond. are similar to each other.

Why the microstructure differs depending on growth rate?

Field angular dependence of I_c

EUCAS 2017, a

Thickness and Temperature dependence of $I_c(min)$

This work includes some data measured at HFLSM, IMR, Tohoku University.

T [K]

Conditions for fabricating long-length BHO doped EuBCO wires

- Materials
 - 3.5 mol% BaHfO₃ doped EuBCO was adopted.
- **Deposition Condition**

In order to ensure

sufficient throughput considering mass production

and

sufficient in-field I_c performance,

High growth rate condition: B was adopted.

■ REBCO Thickness

 $2\sim3$ µm thick was adopted.

A 300 m long wire was fabricated.

300m long BHO doped EuBCO wire

Good uniformity was obtained over 300 m.

In-field I_c measured at both end points are in good agreement,

$$I_c = 1755 \text{ A/cm (side S)}$$

 $I_c = 1786 \text{ A/cm (side E)}$

@ 30 K, 2 T

* This work includes some data measured at HFLSM, IMR, Tohoku University.

Reproducibility of I_c -B- θ characteristics

Good reproducibility of I_c -B- θ characteristics was confirmed.

^{*} This work includes some data measured at HFLSM, IMR, Tohoku University.

OUTLINE

- Introduction
 - Production wire at Fujikura
 - Hot-wall PLD concept for BMO doped-REBCO
- Results
 - Selection of materials
 - Optimization of deposition condition
 - Thickness dependence of REBCO
 - Fabrication of a 300 m long wire
- Summary

Summary

- BHO doped EuBCO wires were fabricated by Hot-wall PLD using the deposition conditions of
 - A: high-Jc condition with growth rate ~5-7 nm/sec
 - B: high throughput condition with growth rate ~20-30 nm/sec.
- REBCO thickness dependence was investigated for BHO doped EuBCO CC fabricated under the two conditions of A,B.
- Minimum I_c in angular dependence was almost equal under the two conditions, in the following cases.
 - •REBCO thickness > 2 μm
 - •Temperature > 30 K
- A 300 m long BHO doped EuBCO wire was successfully fabricated using condition B.
- Londitudinal I_c uniformity ~ 2.6%
- I_c @30K, 2T = 1755 A/cm-w , 1786 A/cm-w @both end points
- Reproducibility of I_c -B- θ characteristics was confirmed

Development for mass production of doped wire is under way.

*Please inquire individually for the commercial release time.

Thank you for your attention!

Questions?

Fujikura booth is in exhibition floor

E-mail: ask-sc@jp.fujikura.com

Web: http://www.fujikura.com/

In-field I_c measurement

Evaluation sample

microbridge process of photolithography and wet etching

·Bridge length: 1 mm

•Bridge width : $30\sim40 \ \mu \text{m}$

- **Measurement** @ HFLSM, IMR, Tohoku University Four-probe transport, 1 μV/cm-criteria Equipments
 - Applied field : $0\sim18$ T, using SM
 - Sample temp. : \sim 4.2 K, using GHe
 - Field angle : $-45^{\circ} \sim 135^{\circ}$, rotatable stage
- I_c conversion (bridge $I_c \rightarrow 10$ mmw I_c)

```
I_c(10\text{mmw}; B, T) =
            I_c(10\text{mmw}; 77.3 \text{ K, s.f.}) \times I_c(\text{bridge}; B, T)
```


20T-SM

18T-SM

Samples of thickness dependence investigation

Index	RE	вмо	Deposition Condition	Thickness [mm]	<i>I</i> _c (77.3K, s.f.) [A/12mm]	<i>T</i> _c [K]
A-1			А	0.9	346	91.4
A-2			А	2.2	599	91.8
A-3	RE	BaHfO3 3.5mol%	А	5.1	845	91.1
B-1	KE		В	1.1	339	92.5
B-2			В	2.4	580	92.3
B-3			В	6.2	1006	92.2

A: growth rate 5~7 nm/sec

B: growth rate 20~30 nm/sec

Ic - B at 4.2 K

Ic properties in strong magnetic fields

^{*} This work includes some data measured at High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University.

Comparison of I_c uniformity with non-doped wire

■ Production wire (GdBCO w/o artificial pinning)

comparison of Ic - θ

comparison of Ic - θ

Fp over 20 K

deposition condition B

Plan view STEM image

Depo. Cond. A Depo. Cond. A Depo. Cond. A 0.9um 2.2um 5.1um Depo. Cond. B 2.4um

In-field I_c distribution in a 1 km long demo sample (10-77 K)

Uniform in-field I_c in wide range of temperatures are observed

STDEV / average < 5.8%

BMO doping technique for REBCO C.C. by vapour phase deposition

Big Jc enhancement in wide temperature range by nanorod-like BaMO₃ structure

- **MOCVD (Houston Univ.)**
- **Biggest Jc/Fp obtained**
 - 20MA/cm2 at 30K 2.5T
 - 1.7TN/m3 @ 4.2K

- PLD (ISTEC, Nagoya Univ. etc.)
- **BMO** optimization (ISTEC)
 - BaHfO₃ doping vs BaZrO₃ doping
- RE element optimization (ISTEC, Nagoya)
 - Gd, Eu, Sm
- LTG technique (Nagoya Univ.)
 - thinner rod diameter
 - 1.5TN/m3 @ 4.2K

H. Tobita, et al. Supercond. Sci. Technol. 25 (2012) 062002

End-to-end continuous measurement of in-field I_c

using in-field magnetization measurement by Kyushu University

Presented in **ASC2016 T. Fukuzaki**, K. Higashikawa, T. Kiss, et al.

40m long BZrO-doped GdBCO sample

depo. cond. B before optimization

77K 0.05T

77K 3.0T

- Shape of the I_c distribution is similar among magnetic fields
- Ratio of the standard deviation does not depends on magnetic fields

• $I_c(x)$ and $I_c(B)$ can be estimated separately

 $\boldsymbol{\sigma}$ is derived from the mean square

5mm^w 40m long BaZrO₃ doped sample

Ic=309A/cm (77K,0T) Jc=1.7MA/cm²

Uniformity (STDV/ave.lc) =3.9 (%)

4mmw 45m long EuBCO -sample

Ic=1863A/cm (side A)

Ic=1883A/cm (side B)

Jc=7.2-7.4MA/cm2

@30K, 2T

$oldsymbol{I_{c}}$	Depo. Cond. A	Depo. Cond. B
77.3 K, 5 T	1.4E+02 1.2E+02 1.0E+02 1.0E+02 8.0E+01 6.0E+01 2.0E+01 0.0E+00 -45 0 45 90 135 θ [deg]	1.4E+02 1.2E+02 1.0E+02 1.0E+02 8.0E+01 4.0E+01 2.0E+01 0.0E+00 -45 0 45 90 135 θ [deg]
65 K, 5 T	5.0E+02 4.0E+02 3.0E+02 2.0E+02 1.0E+02 -45 0 45 90 135 θ [deg]	4.0E+02 3.5E+02 3.0E+02 2.5E+02 2.0E+02 1.5E+02 1.0E+02 5.0E+01 0.0E+00 -45 0 45 90 135 θ [deg]

1.4E+03 1.2E+03 1.0E+03 1.0E+03 8.0E+02 4.0E+02 2.0E+02 0.0E+00 -45 0 45 90 135 θ [deg] 1.4E+03 1.2E+03 1.0E+03 8.0E+02 4.0E+02 2.0E+02 0.0E+00 -45 0 45 90 135 θ [deg] 3.0E+03 2.5E+03 2.0E+03	I_{c}	Depo. Cond. A	Depo. Cond. B
2.5E+03	50 K, 5 T	1.2E+03 1.0E+03 1.0E+03 8.0E+02 4.0E+02 2.0E+02 0.0E+00 -45 0 45 90 135	1.2E+03 1.0E+03 1.0E+03 8.0E+02 4.0E+02 2.0E+02 0.0E+00 -45 0 45 90 135
1.0E+03 5.0E+02 0.0E+00 -45 0 45 90 135 θ [deg] 1.5E+03 -45 0 45 90 θ [deg]	40 K, 5 T	2.5E+03 2.0E+03 40 K, 5 T 1.5E+03 1.0E+03 5.0E+02	2.5E+03 2.0E+03 2.0E+03 1.5E+03 1.0E+03 5.0E+02

$oldsymbol{I_{c}}$	Depo. Cond. A	Depo. Cond. B
30 K, 5 T	5.0E+03 4.0E+03 3.0E+03 2.0E+03 1.0E+03 0.0E+00 -45 0 45 90 135 θ [deg]	5.0E+03 4.0E+03 3.0E+03 2.0E+03 1.0E+03 0.0E+00 -45 0 45 90 135 θ [deg]
20 K, 5 T	6.0E+03 5.0E+03 4.0E+03 3.0E+03 2.0E+03 1.0E+03 0.0E+00 -45 0 45 90 135	6.0E+03 5.0E+03 4.0E+03 2.0E+03 1.0E+03 0.0E+00 -45 0 45 90 135
	θ [deg]	θ [deg]

$oldsymbol{J_{ ext{c}}}$	Depo. Cond. A	Depo. Cond. B
77.3 K, 5 T	4.0E+05 3.5E+05 3.0E+05 2.5E+05 2.0E+05 1.5E+05 1.0E+05 5.0E+04 0.0E+00 -45 0 45 90 135 θ [deg]	3.5E+05 3.0E+05 2.5E+05 2.0E+05 1.5E+05 5.0E+04 0.0E+00 -45 0 45 90 135 θ [deg]
	- [0]	2 [420]
65 K, 5 T	2.0E+06 1.5E+06 1.0E+06 5.0E+05 0.0E+00 -45 0 45 90 135 θ [deg]	1.0E+06 8.0E+05 6.0E+05 4.0E+05 2.0E+05 0.0E+00 -45 0 45 90 135

$oldsymbol{J}_{ ext{c}}$	Depo. Cond. A	Depo. Cond. B
50 K, 5 T	5.0E+06 4.0E+06 3.0E+06 2.0E+06 1.0E+06 0.0E+00 -45 0 45 90 135 θ [deg]	3.5E+06 3.0E+06 2.5E+06 2.5E+06 1.5E+06 5.0E+05 0.0E+00 -45 0 45 9 135 θ [deg]
40 K, 5 T	8.0E+06 7.0E+06 6.0E+06 5.0E+06 4.0E+06 3.0E+06 1.0E+06 0.0E+00 -45 0 45 90 135	7.0E+06 6.0E+06 5.0E+06 4.0E+06 3.0E+06 2.0E+06 1.0E+06 0.0E+00 -45 0 45 90 135
	θ [deg]	θ [deg]

_	Depo. Cond. A	Depo. Cond. B
J _c	Depo. cond. A	Беро. сопа. В
30 K, 5 T	2.0E+07 1.5E+07 1.0E+07 5.0E+06 0.0E+00 -45 0 45 90 135 θ [deg]	1.4E+07 1.2E+07 1.0E+07 1.0E+07 8.0E+06 6.0E+06 2.0E+06 2.0E+06 0.0E+00 -45 0 45 90 135 θ [deg]
20 K, 5 T	3.0E+07 2.5E+07 2.0E+07 1.5E+07 1.0E+07 5.0E+06 0.0E+00 -45 0 45 90 135	2.0E+07 1.5E+07 1.0E+07 2.0um 1.0E+07 5.0E+06 20 K, 5T 0.0E+00 -45 0 45 90 135
	θ [deg]	θ [deg]

