Cost-effective production of HTS wires by chemical solution deposition

Brygida Wojtyniak, Jan Kunert, Ron Feenstra, Mariusz Mosiadz, Oliver Brunkahl, Mark Rikel, Jan Bennewitz, Martina Falter, Oliver Thiems, Lisa Koliotassi, Tobias Betche, Michael Bäcker

Geneva, 19th September 2017
CSD processing

- Chemical solution deposition for complete layer architecture
 - Best price performance ratio for large volume production
 - Unique and protected technology
Content

- **Industrial applications**
 - DC bus bars
 - Long length laminates
 - Performance at low fields and high temperatures
 - Production upscaling
 - Magnets
 - Performance at medium fields and low temperatures
 - Joint technology
 - Mechanical performance: bending

- **Distribution grids**
 - AC cables
 - Non-magnetic substrates
 - Mechanical requirements: strain and twist
Industrial applications

DC bus bars

-single copper laminate - HTS neutral fiber
 - Long length with high homogeneity
 - Mechanical and electrical stability with high J_e

150m x 10mm, 310±10A (@77K, sf), homogeneity <5%

50µm single copper laminate
Industrial applications

DC bus bars

- single copper laminate - HTS neutral fiber
 - Performance at low fields and high temperatures

Best HTS tapes > 800A @65K, sf

I_c (B, θ, T) system
(0-5T, 0-180°, 0-800A, 20-100K)
Industrial applications
DC bus bars

- single copper laminate - HTS neutral fiber
 - Upscaling: wide tapes and production devices

4x25m high temperature annealing furnace

40mm fully buffered tape
Industrial applications
Magnets

- Performance at low temperatures and medium magnetic fields
 - Typical operation conditions: 30-50K, 1-3T

Typical $I_c(B,\theta,T)$ behaviour

Typical $I_c(B,\perp,T)$ behaviour
Industrial applications

Magnets

- Customized laminates
 - Small bending diameter possible

I_c degradation <2% for double bending on 15mm diameter
Industrial applications
Magnets

- Joints and splices
 - Bridge-type joints
 - Lead free solder paste (mp >200°C)

Typical joint resistance <20nΩ
Grid applications

AC cables

- Non-magnetic substrates
 - <100m processing in R&D
 - $I_c (@\text{Ni9W}) \approx I_c (@\text{Ni5W})$

EBSD: 93.4% index rate, 94% in 10° tilt

$I_c: 308 \text{A/cmw}$
Grid applications
AC cables

- Non-magnetic substrates
 - Improvements in large scale processing

~10 t ingot processed to 60 µ tape

Preference in cube growth >90%

Out-of-Plane distributions from EBSD

<table>
<thead>
<tr>
<th>Tape</th>
<th>% Cube</th>
<th>Error</th>
<th>% Cb-G</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni5W (MAY 2017)</td>
<td>99.9</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ni9W (B2-2 JUNE 2017)</td>
<td>93.7</td>
<td>0.8</td>
<td>3.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Ni9W (B2-1 September 2016)</td>
<td>62.2</td>
<td>1.6</td>
<td>15.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Grid applications
AC cables

- Mechanical requirements
 - Tensile stress: 250mPa
 - Twist: 200mm, 360°
 - Bending: Ø 30mm

3 batches of 10mm wide HTS tape

HTS tapes fullfill typical requirements for AC cable applications
Summary

- Up-scaling of production ongoing
 - 40mm technology partially implemented
- HTS tapes customized for applications available
 - Laminates, joints
- Mechanical and electrical specifications reached
 - Bending, twist, strain, resistance, \(I_c (B,\theta,T) \)
- In-house test facilities qualified
 - 5T-\(I_c \)-tester, mechanical testing
Thanks for your attention