

Progress of REBCO Coated Conductor Program at SJTU and SSTC

Yijie Li

Linfei Liu, Xiang Wu, Yanjie Yao, Wei Wang

Shanghai Jiao Tong University
Shanghai Superconductor Technology Co., Ltd

EUCAS 2017, Geneva, 17-21 September 2017

Outline

- Introduction to REBCO CC program at SJTU &SSTC
- Research activities at SJTU
- Scale-up processes for fabrication at SSTC
- Summary

Introduction

CC Project Background at SJTU & SSTC

- Key National Project from Ministry of Science and Technology of China (2009-2012) (PLD+RABiTS, 3.5 million US\$, SJTU+Northwest Institute for Non-ferrous Metal Research)
- China's domestic ITER (International Thermonuclear Experimental Reactor) matched project (2012-2014, 1 million US\$, SJTU)
- Major industrialization project from Shanghai Municipal Science and Technology Commission (2012-2016) (PLD+IBAD; 8 million US\$,
 SJTU+Shanghai Superconductor Tech. Co.)

Lab Research Goal: 3 mµ thick REBCO layer, Jc>3.5 MA/cm2, Ic>1000A/cm

Pilot-line Goal: L>1000m, Ic=300-500A/cm Jc>3.0 MA/cm²

Lab Research Activities @ SJTU High Jc REBCO CC Process Development

Lab Research Facilities

Sputter System

TapeStar Hall Probe System

Bruker Area-Detector XRD

1000A Four-Probe I-V Measurement System

Ion Beam Assisted Deposition System

Reel-to-Reel Electropolishing System

上海文通大學 Reel-to-reel Research PLD System

Maximum Tape Length: 200m,

LPX Pro 220 Laser: 90W, 200Hz, 248nm

光路

REBCO Tape Architecture

- Hastelloy C276 substrate
- **❖ IBAD-MgO**
 - IBAD-MgO with Y₂O₃/Al₂O₃ barrier layer
- ***** Buffer layer
 - Sputtering single CeO₂ layer
- **Superconducting layer**
 - PLD-REBCO layer
- **❖** Ag and Cu stabilization
 - Sputtering Ag layer

Electropolishing Process

As-processed metal tapes Rq>50nm (10x10 µm²)

After electropolishing Rq<2nm (10x10 μm²)

First Home-made Reel-to-Reel Electropolishing System in China

PLD-IBAD processed YBCO superconducting tape architecture

IBAD Process

GIXRD profile by Shanghai Synchrotron Radiation Facility

RHEED image of IBAD MgO film

❖ IBAD-MgO film had pure c-axis

❖ IBAD-MgO film had smooth surface.

orientation.

• RMS < 1nm(5 μ m $<math>\times 5$ μ m)

AFM image of IBAD MgO

CeO₂ Cap-layers Process

Sputter-deposited CeO₂ layers on IBAD-MgO have smooth surface and high texture

RMS<1 nm, $(5\mu m \times 5\mu m)$; $\Delta \phi < 4.0^{\circ} \Delta \omega < 1.5^{\circ}$

Optimized CeO_2 layer texture: $\Delta\Phi$ =2.91°

REBCO Process

XRD from YBCO layer; in-plane texture is smaller than 2 degree

YBCO film microstructure evolution as the increase of thickness on IBAD tapes

YBCO film microstructure evolution as the Increase of thickness on RABiTS tapes

Thick and thinner films have similar surface morphology

0.4 μm

2.0 μm

Deviated lower Ts caused a-axis orientation

REBCO films deposited at deviated higher Ts

RE-rich REBCO films deposited at higher Ts on IBAD-MgO

Thick YBCO films on RABiTS tapes

上海超导 anghai Superconductor

Different surface morphology on different grain.

>1.0 μ m thick YBCO films, Ic~300A; Jc<3×10⁶ A/cm²

On IBAD tapes, when REBCO thickness increased to $2.0\mu m$, Ic is still nearly linearly increasing with thickness. So far, we have achieved Ic of 780A. Further research work on increasing REBCO layer thickness is ongoing.

100m long coated conductor

- Magnetic, non-contact measurement
- Reel to reel measurement
- Ic is about 500A/cm and uniform along the length. (77K)

Scale-up processes for fabrication at SSTC

Fabrication Line @ SSTC \$上海超导

Long tape fabrication process development and results

Pilot Electro-polishing Process

Original Tape The Service Service State S

Tape speed >200m/h

Pilot IBAD-MgO Process

IBAD-MgO on-line in-situ RHEED pattern.

> - 1 | Q Q B B · - 1 | 4 4 4 4

 ϕ -scan XRD pattern from PLD-CeO₂ film grown on IBAD-MgO template, $\Delta \phi$ =4.0°

CeO₂ film has very smooth surface RMS= 0.908nm(5μ m $\times 5\mu$ m)

XRD θ-2θ scan of CeO₂ films deposited on IBAD-MgO

Km class CeO₂ long tape has high texture, $\Delta \Phi < 4.0^{\circ}$, $\Delta \omega < 1.5^{\circ}$

REBCO Process

REBCO film deposited by PLD

- The surface of REBCO films is smooth
- \approx RMS=2.2 nm(5 μ m \times 5 μ m)
- Pure c-axis orientation

Tc of Standard Tape

1000 m Long REBCO Tape Fabrication

In August 2014, first kilometer long REBCO tapes was fabricated.

In October 2014, the third kilometer long REBCO tapes, I_C>200A.

Improvement of uniformity along length

上海超导

hai Superconductor

Ic Profile Over km Long Tapes

SSTC standard REBCO tape: Ic=1020A/cm, at 4.2K and 12T, H//c. Ic measured at Institute of Plasma Physics, Chinese Academy of Sciences

Goal: Ic>2000A/cm, at 4.2K and H>10T, H//c, Jc>2x10⁷/cm²

Summary

- SJTU successfully developed hundred meter long class CC tapes with over 500 A/cm (at 77 K, self field) based on PLD deposition processes.
- A pilot PLD/IBAD-MgO process CC fabrication line was set up at SSTC in 2013.
- Reel-to-reel PLD process with high deposition rate was already scaled up to >100 m/h tape speed.
- Kilometer long coated conductor tapes with over 300A/cm performance have been routinely fabricated at SSTC.
- Next step will be focused on REBCO tape fabrication for high-field applications.

Thanks For Your Attention