

上海市高温超导重点实验室

Shanghai Key Laboratory of High Temperature Superconductors

Long-length REBaCuO Coated Conductors Derived by Reel-to-Reel Metalorganic Solution and Ion-beam Assisted Deposition

Chuanbing Cai

M. J. Li, M. Boubeche, Z. Liu, C. Cui, C. Bai, Y. Guo, Y. Lu, F. Fan, M. Sun,

Shanghai Key Laboratory of High Temperature Superconductors,
Department of Physics, Shanghai University, China
Shanghai Creative Superconductor Technologies Co., Ltd., China

Outline

- Technology routes selected and R2R pilot line for kilometer tape built up
- Effort on improvement of processing efficiency and HTS layer thickness
- Development and state of the art for longlength MOD Coated Conductors

HTS Coated Conductors @Shanghai University & Spinning-off Company, SCSC

- Textured Oxide Buffers on Untextured or Textured Tape via IBAD or RABiTS
- ◆ Epitaxial (Y,RE)123 Layers on Textured Oxide Buffers via MOD

Reel-to-Reel Production Line Spinning off from Shanghai University

Spin-off

Research Level R2R Sputtering System

Industry-level Sputtering Pilot Line ~ km

STCSM-Key Project

Shanghai Municipal Key Project

For HTS layers

Industry-level MOD Pilot Line ~ km

High-efficiency Technology Route Developed at Shanghai Uni. & Production Line at Shanghai Creative Supercond. Technol. Co. Ltd.(SCSC)

- Electopolish of Substrate
- Sputtering buffer/E-beam IBAD-MgO/epi-MgO

Lamination

- Cost-effective MOD
- Non-vacuum, low cost tools
- Easy and accurate to modify composition
- 100% utilization of precursor solution
- Readily scale up for wide-web process
- "Dirty" films, but helpful for pinning
- Independently home-made pilot lines
- Smart control system
- In-situ quality inspection

Scale up of substrate process by R2R contactless electropolish

- Environmental friendly polishing liquid
- Self-designed production-scale EP rig
- In-situ process and quality monitoring
- Low surface roughness
- High speed~ 100 mph
- Width up to 40 mm
- Multi-lane available

Surface roughness vs. EP speed

In-situ RHEED Observation for Texture Evolution of Oxide Buffer on Untextured Tape

- ◆ Peak intensity of RHEED patterns for (024) MgO
- **◆** Increasing intensity at proper time widows

In-situ RHEED Observation for Texture Evolution of Oxide Buffer on Untextured Tape

▶ More than kilometer buffer growth controlled and checked by RHEED patterns

Evaluation Method Developed for Texture of Oxide Buffer

Direct comparison of time dependence of In-situ RHEED pattern and ex-situ xray Phi scanning

Characteristic Method Developed For insitu Check of Texture

Buffer Surface Quality vs. Resultant SC Performance

 $J_c=2.0 \text{ MA/cm}^2$

 $J_c=2.4 \text{ MA/cm}^2$

Outline

- ◆ Technology routes selected and R2R pilot line for kilometer tape built up
- Effort on improvement of processing efficiency and HTS layer thickness
- Development and state of the art for longlength HTS Coated Conductors

Industrial Process for MOD-REBaCuO Coated Conductors

Coating + Low temperature Pyrolysis

High-temperature Crystallization

Key Issues for MOD-derived YBCO Coated Conductors

- **◆** To increase the production rate
 - Less Pyrolysis Time:
 - -- Low-fluorine (ISTEC/AMSC/SHU...);TFA-Anhydride(ICMAB);
 - --Additions such as DEA/TEA (SNL/SHU...); /PEG(ICMAB,Tsinghua...)
 - Less Crystallization Time:
 - --Low ambient pressure(SNL/AMSC...); Fast gas flow
- To improve performance
 - Increased thickness of YBCO layer
 - Improved surface morphology via doping
 - > Enhanced flux pinning via doping

1.4-2.1µm YBCO by single MOD coating developed in SHU

Dramatic Reduction in Pyrolysis Time of MOD

Li et al., IEEE Trans. Appl. Supercond. 25(3)(2015)pp1-4

- Smooth and dense films achieved with doping at a pyrolysis rate as high as 25-50 K/min
- Pyrolysis time reduced to be as short as one minute using extremely low F-content solutions

 $\Delta G_T^{\theta} = \sum v \Delta G_{f,T}^{\theta}(products) - \sum v \Delta G_{f,T}^{\theta}(reactants)$

 $\Delta G < 0$, Possible reaction

 $\Delta G = 0$, Balanced reaction

 $\Delta G > 0$, Impossible reaction

Thickness Issues: Monolayer of Y(Dy)BaCuO

- Various thicknesses (0.5 μm-2.0 μm)
- Prepared by SLF-MOD method

With the film thickness increases, a-axis grains appear

Thickness dependence of In-plane and out-of-plane Textures

Thickness Issues: Monolayer of Y(Dy)BaCuO

- As the film thickness increasing, a-axis grains, pores and element segregation of YBCO films were formed.
- YBCO films with proper thickness as 1.5 μm, appear better.

Thickness Issues: Mulitlayer of Y(Dy)BaCuO

Y(Dy)BCO
Y(Dy)BCO
Y(Dy)BCO
Y(Dy)BCO
Y(Dy)BCO
Y(Dy)BCO
Substract

Five-layer flat and crack-free YBCO films with a thickness of more than 2.5 µm

Thickness Issues: Mulitlayer of Y(Dy)BaCuO

before etching ~2.5 µm thick

After etching ~1.5 µm thick

Thickness Issues: Mulitlayer of Y(Dy)BaCuO

Illustration of a/c-axis growth along the thickness direction and time applied

- A pure c-axis growth may occur at the bottom of the resultant film because the less a-axis grains are present after the film surface is etched.
- At the beginning, the c-axis growth is dominated. With increasing time for thick films, a-axis grains nucleate, grow, and enlarge along the thickness direction, together with impurity particles.

Thickness Issues: Mulitlayer of DyBaCuO/YBaCuO

2 Theta (deg.)

Thickness Issues: Multilayer of DyBaCuO/YBaCuO

- Compared with the monolayer thick (Ydy)BaCuO, the multiayer of DyBCO/YBCO exhibits a better texture, surface morphology and critical currents.
- Higher critical current for thick multilayer can be improved with optimal oxygenation

Oxygen Content & Resultant *Ic* evaluated by XRD Peak Intensity for Thick HTS Films Covered by Silver

H. Jian, C. Cai et al. Physica C, 538(2017)40-45

Good Agreement between (006)YBCO Intensity and Resultant Performance

Outline

- ◆ Technology routes selected and R2R pilot line for kilometer tape built up
- Effort on improvement of processing efficiency and HTS layer thickness
- Development and state of the art for longlength HTS Coated Conductors

Development for long-length Tapes at SCSC

Long-length Performance improved in past years

Texture Properties for Bilayer and Triple HTS

HTS Trilayer (~2 μm thick)

HTS Bilayer (~1 μm thick)

Critical Current for Typical as-grown Tapes at SCSC

Critical Current for Modified MOD-HTS Tapes at SCSC

Sliced and Laminated Products with 4mm/w-HTS

Laminated with Brass/Polyimide and Joint Techniques

Commercial 4mm-width HTS tapes laminated

Joint Resistive~ 10⁻⁸-10⁻⁹Ω

Summary

- ◆ Processing routes for 2G HTS tapes, including IBAD buffer and MOD HTS technologies, and R2R pilot line are developed well in Shanghai University and spinning off company, SCSC.
- ◆ XRD measurements show both in-plane and out-of-plane textures are as good as 3 degree, and the critical currents along five hundreds of meters tape reach 370-420 A/cm-width at 77 K, making a solid evidence after AMSC and D-Nano, for the cost-effective MOD applicable and promising for long-length high-quality coated conductors.
- ◆ Commercial laminated 2G tape are scaling up, with typical critical current of around 110-150 A/4mm-w (77K, self field), showing the chemical solution approach competitive with the vapor deposition technique using vacuum.

Acknowledgement:

- -- Z.Y. Liu, Y. M. Lu, M. J. Li, Y. Q. Guo, C. Y. Bai, Z. G. Zeng et al., at Shanghai University,
- -- H. B. Jian, Y. J. Zhang, H. Zhang, R. T. Huang et al., at Shanghai Creative Supercond. Technol. Co. Ltd.

Thank you for your attention

Spinning off

