A NEW CHANCE FOR BI-2212 WIRES TO BOOST THEIR APPLICATIONS IN HIGH MAGNETIC FIELDS

Andrea Malagoli
CNR-SPIN
SPIN research activity is organized into six “Activities”:

1. Novel superconducting and functional materials for energy and environment (P.I.: Andrea Malagoli)
2. Superconducting and correlated low dimensional materials and devices for quantum electronics and spintronic (P.I.: Procolo Lucignano)
3. Innovative materials with strong interplay of spin orbital charge and topological degrees of freedom (P.I.: Mario Cuoco)
4. Light-matter interaction and non-equilibrium dynamics in advanced materials and devices (P.I.: Roberto Cristiano)
5. Advanced materials and techniques for organic electronics, biomedical and sensing applications (P.I.: Annamaria Massone)
6. Electronic and thermal transport from the nanoscale to the macroscale (P.I.: Giovanni Cantele)
Our lab has the unique capability to combine wires development and long length production.

First in the world
1.6 km long batch of MgB\textsubscript{2} tape
18 batches realized
KEY POSITIVES

- A flexible conductor technology
 - Round, rectangular, square.....
 - Fine filaments
 - Twisted
 - Multiple architecture

- Excellent conductivity matrix without any need for diffusion barrier

- If reacted under OP (50-100 bar) the properties are well above the applications requirements: \(J_E \approx 800 \text{ A/mm}^2 \) @16T

- The fabrication route is the same industrialized for Nb-based and MgB\(_2\) superconductors

CRITICAL POINTS TO FACE

- Mechanical properties: low E and low Yield Strength

- Bubbles and internal pressure formation in long length (≥1m) wires due to **Carbon impurity** (evolving in CO\(_2\)) and **porosity**

- Wind and react technique like Nb\(_3\)Sn but, if OP needed, more complex
 - 890 C, not 670 C
 - 50/100 bar overpressure, not 1 bar

- Costs
Heat Treatment @ ASC successfully replaced the classical powder producer Nexans with two new suppliers, nGimat and MetaMateria.

OP-furnace:
6 zone, active vol. 13 cm x 40 cm

Properties have significantly improved.

J.Jiang 4MO1-03
KEY POSITIVES

- A flexible conductor technology
 - Round, rectangular, square.....
 - Fine filaments
 - Twisted
 - Multiple architecture

- Excellent conductivity matrix without any need for diffusion barrier

- If reacted under OP (50-100 bar) the properties are well above the applications requirements: $J_E \approx 800 \text{ A/mm}^2 \text{ @16T}$

- The fabrication route is the same industrialized for Nb-based and MgB$_2$ superconductors

CRITICAL POINTS TO FACE

- Mechanical properties: low E and low Yield Strength

- Bubbles and internal pressure formation in long length (≥1m) wires due to Carbon impurity (evolving in CO$_2$) and porosity

 $\approx 30\%$ in the wire

 $\approx 20 \text{ ppm in the powders}$

- Wind and react technique like Nb$_3$Sn but, if OP needed, more complex
 - 890 C, not 670 C
 - 50/100 bar overpressure, not 1 bar

- Costs
CERN/CNR-SPIN COLLABORATION

ADDENDUM FCC-GOV-CC-0086/EDMS I750320/KE 3507 OF THE MEMORANDUM OF UNDERSTANDING FOR THE FCC STUDY

The scope of this collaboration is to advance the performance of three superconducting materials (Bi-2212, MgB$_2$, IBS), using industrially scalable productive methods, to make them suitable for high-field magnet applications.

- **MgB$_2$**: increase the operating field by adopting an original doping method;
- **Bi-2212**: reproduce the performance today obtained by high pressure heat treatment with a mechanical deformation process;
- **IBS**: develop prototype IBS conductors that meet the critical current density (J_c) requirements through reliable, simpler and scalable techniques that would permit industrialisation.

The goals:

Optimisation of the architecture and deformation process of Bi-2212 multifilamentary wire samples for high density

The target J_c is 400–600 A/mm2 at 16 T and 4.2 K measured on optimised samples, both as short lengths and on a suitable VAMAS sample holder.
The aim of the project is to **break the ground for the development of a round, multifilamentary, and inexpensive high-performance HTS wire for fusion magnets**. We split this general aim into two main objectives:

1) Optimization of the thermo-mechanical pre-treatment of the Bi-2212 wires to obtain the performance required for fusion magnets without the need of a high-pressure treatment during the formation of the superconducting phase. The wire is aimed to be an alternative to existing HTS and LTS wires for fusion magnets.

2) Development of suitable precursors for the TI-1223 wire production. Nano-crystalline or amorphous powders which result in textured-growth without the need of heating above the melting temperature are in the focus. Demonstration of textured-growth at interfaces is planned.

The goals:

Optimization of the pre-reaction mechanical treatment, wire architecture and heat treatment to avoid bubble formation and to ensure a high degree of texture.

Optimal process parameters and wires prototype with $J_e \approx 500\, \text{A/mm}^2$ at high fields.
GROOVE-ROLLING / DRAWING ALTERNATION

No reduction in Closed Ends-wire!

f.f. = 16%-18%

No reduction in Closed Ends-wire!

We actually observed what we hypothesized: after flowing in the longitudinal direction, the voids (visible in the left figure) were filled thanks to a compression in the transversal direction due to the groove-rolling.

Not a 100% dense wire but the residual porosity is low enough to avoid agglomeration.

No bubbles, no internal pressure.
No Ic degradation!!!!

Same results at the ends of the wire
TOWARD THE OPTIMIZATION

- **f.f. = 16%-18%**
- **1332 filaments**
- **f.f. = 22%-24%**
- **333 filaments**
- **f.f. = 28%**
- **SPIN, f.f. = 18%**
- **SPIN, f.f. = 24%**

OST – NHMFL

Total pressure (bar)

- 20 September 2017
- EUCAS 2017, GENEVA
- Andrea Malagoli
Melt region – Why does J_c vary with T_{max}?

2212 formation region How to form more, better connected 2212?

Annealing step – Needed to increase J_c, but do not know what occurs.

Cooling to RT – Overdope 2212 with oxygen to increase pinning and J_c.

888°C → 0.2h

830°C → 50°C/h

160°C/h

10°C/h → 878°C

2.5°C/h

836°C → 48h

80°C/h

888°C → 0.2h
Obtained samples with different Oxygen overdoping

Please see A. Leveratto 3MP4-04
- Both current contacts are kept at low temperature (direct thermal link with the Helium bath)
- The thermometer is in thermal contact with the sample
- Very high homogeneity of the temperature even with high current flow
GB-ANALYSIS THROUGH $I_C(T)$ MEA

PROXIMITY EFFECT

Normal metal

Superconductor

Δ_0

ξ_S

ξ_N

d_N

d_S

$\gamma_B = \frac{R_B}{\rho_N \xi_N} \frac{d_N}{\xi_N}$

$\gamma_M = \frac{\rho_S \xi_S}{\rho_N \xi_N} \frac{d_N}{\xi_S}$

$\xi_N \propto \frac{1}{\rho_N^{1/3}}$

$\xi_N \propto n^{1/3}$

J_c (A/mm2)

T (K)

W_{Qbp}

W_Q

W_O2

W_PA

W_{air}

$J_c (T=4K)$

$J_c / J_c(T=4K)$

T/T_c

W_{Qbp}

W_Q

W_O2

W_PA

W_{air}
• We successfully applied a model based on the proximity effects and weak link: such a model can be used as well for all superconductors whose weak links are an obstacle to supercurrent (e.g. cuprates, iron pnictides and chalcogenides)
• Among the results what is surprising is that the “quality” of the GBs in Air-sample is very similar to that of O₂-sample: 21% of Oxygen is enough if the heat treatment is complete, but other factors block the transport current. Secondary phases (Bi-2201)?
Experimental set-up employed during the collection of the XRPD data at the ID11 beamline of ESRF @ Grenoble.
Phase Evolution & Effects

20 SEPTEMBER 2017

EUCAS 2017, GENEVA

Andrea Malagoli

Temperature [°C] vs. Time [h]

- $T_{MAX} = 888^\circ$ C
- 876 °C
- 882 °C
- 836 °C

Phase evolution & Effects of eucas 2017, geneva 20 September 2017

Crystallization in air: 870 °C
Crystallization in O₂: 876 °C

Q (Å⁻¹) vs. Time [h]

Air

O₂
Texturing along [110]

It seems that Oxygen promotes the Bi-2212 grains orientation

<table>
<thead>
<tr>
<th></th>
<th>After 3h@836 °C</th>
<th>After 8h@836 °C</th>
<th>After 8h@836 °C + cooling (295°C)</th>
<th>f.r. 48h@836°C +cooling (T room)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-2201 (wt%) 100% O₂</td>
<td>~3</td>
<td>~3</td>
<td>~5</td>
<td>~5</td>
</tr>
<tr>
<td>Bi-2201 (wt%) air</td>
<td>-</td>
<td>-</td>
<td>~9</td>
<td>~9</td>
</tr>
</tbody>
</table>
• It is reasonable to think about Bi-2212 applications without necessarily using OP.

• It might be however interesting to apply OP process at low pressure (below 10 bar) to GDG wires.

• Large room for further improvement from architecture optimization, but from our analysis it comes out that there could be still room even for heat treatment optimization. The goal of 400-600 A/mm² at high field (16-20 T) is not so far.
PRICE/PERFORMANCE WITH AG AT $5–30/OZ

• It is reasonable to think about Bi-2212 applications without necessarily using OP

• It might be however interesting to apply OP process at low pressure (below 10 bar) to GDG wires

• Large room for Je improvement from architecture optimization, but from our analysis it comes out that there could be still room even for heat treatment optimization. The goal of 400-600 A/mm² at high field (16-20 T) is not so far!

• GDG is already an industrial process and thus reliable and particularly cheap
 • Costs are depending on Ag

Calculations by Strauss and Marken (S4E Paestum May 2014)
• It is reasonable to think about Bi-2212 applications without necessarily using OP
• It might be however interesting to apply OP process at low pressure (below 10 bar) to GDG wires
• Large room for J_e improvement from architecture optimization, but from our analysis it comes out that there could be still room even for heat treatment optimization. The goal of 400-600 A/mm2 at high field (16-20 T) is not so far!
• GDG is already an industrial process and thus reliable and particularly cheap
 • Costs are depending on Ag
 • Mechanical properties are very challenging. Something is going on but a lot has to be done
• Soon we will start with the realization of long length (100-200 m) wires for winding
CO-WORKERS & ACKNOWLEDGEMENTS

CO-WORKERS

Alessandro Leveratto, Ilaria Pallecchi, Alberto Martinelli, Valeria Braccini, Luca Leoncino, Emilio Bellingeri, Carlo Ferdeghini
CNR-SPIN Genova, Italy

ACKNOWLEDGEMENTS

A. Ballarino, S. Hopkins
CERN: collaboration within the Addendum FCC-GOV-CC-0086 of the Memorandum of Understanding FCC-GOV-CC-0004 for the FCC study

M.Eisterer, J. Bernardi (TUW) and G. Celentano (ENEAA)
EUROfusion Consortium, funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.
THANK YOU FOR YOUR ATTENTION.