

Generation of 25 T with an allsuperconducting magnet system

field profile and field quality measurements of a 4 T REBCO insert coil for a 21 T LTS magnet

<u>C Barth</u>¹, P Komorowski², P Vonlanthen², R Herzog², R Tediosi², M Alessandrini², M Bonura¹, and C Senatore¹

¹ Department of Quantum Matter Physics (DQMP), University of Geneva, Geneva, Switzerland ² Bruker BioSpin AG, Fällanden, Switzerland —

EUCAS 2017

Geneva – Switzerland

Christian Barth

9/20/2017

Motivation

Towards all-superconducting 30-T solenoid magnets

Funded by

FNSNF TIONALFONDS

- Today: commercial systems: B_{max} = 23.5 T @ 2.2 K
- Scope: high resolution NMR , laboratory magnets

Towards 20 T accelerator magnets for HEP

EUCARD² Funded by *coordinated by*

- Today: record collision energy of 8 TeV
- Scope: future circular colliders with up to 100 TeV physics beyond the Standard Model

Motivation

Call for high magnetic fields:

- LTS (background) + HTS (highest field region)
- REBCO tapes currently most promising for high fields
 - mechanical, electrical properties
 - commercial availability

Project: magnet field booster:

- Layer wound REBCO insert for existing 21 T LTS magnet
- \geq 25 T combined center field, \geq 15 mm Ø usable bore
- Has to fit in the magnet's VTI (48 mm max. diameter)

Insert coil

Conductor selection:

- SuperPower (3 mm wide), Kapton insulation
 Insert coil design:
- 20 mm min. Ø, 48 mm max. Ø, 175 mm length
- 1820 turns in 50 layers, 180 m conductor
- 19.2 mH, 220 A op. current, 423 J stored

BUT: screening currents

Tape geometry & radial field component
 → field changes induce screening currents

GOAL: understanding field profile & screening current effects

UNIVERSITÉ DE GENÈVE

Operation of the insert coil

Christian Barth

Coupled coils

Quench detection & protection 🖻

Quench analysis:

- 2 Ω dump resistor, 100 ms max. reaction time
- 8 kW max. load, dissipate 1.5 kJ

Quench detection:

- Hardware QD: ΔU of both halves of the outsert
- Agilent 3457A with limit function: U of the insert

Quench protection:

- 1k A switch to bypass dump resistor in normal operation
 - \rightarrow 19 ± 8 ms reaction during tests \checkmark

22.03.2016

reached 25 T (all-superconducting):

- European record
- 4th highest worldwide

http://www.manep.ch/switzerland-winds-up-superconductivity/

Field profile measurements

Christian Barth

Hall sensor array:

- 9 hall sensor (Arepoc, 30 T), 25 mm separation
- Feed in series, read in parallel, z direction

Calibration:

• Insert coil dummy: use outsert field profile as reference

Experimental procedure:

- Ramp outsert to field, wait for relaxation (600s)
- Charge insert, wait for relaxation (1200 s)
- Discharge insert, wait for relaxation (600s)

UNIVERSITÉ DE GENÉVE

Ζ

UNIVERSITÉ DE GENÈVE

Hall sensor array:

- 9 hall sensor (Arepoc, 30 T), 25 mm separation
- Feed in series, read in parallel

calibration only

	Outsert	Insert
Insert dummy	Ramping to 19 T	n.a.
Insert dummy	Ramping to 0 T	n.a.
Insert	0 Т	charging to 4 T - relaxation - discharging
Insert	5 T	charging to 4 T - relaxation - discharging
Insert	10 T	charging to 4 T - relaxation - discharging
Insert	15 T	charging to 4 T - relaxation - discharging
Insert	19 T	charging to 4 T - relaxation - discharging

experiment

Calibration

Charging of the outsert

Charging of the outsert

Charging of the insert

Asymmetric series expansion

Screening current decay

Evolution of series expansion after charging: Oth order

 $B(z) = \mathbf{B_0} + B_1 z + B_2 z^2 + B_3 z^3 + B_4 z^4 + B_5 z^5 + \cdots$

Main field:

- Increases after charging
- Independent of outsert field
- 4 mT / decade \rightarrow 0.1 % / decade

Screening current decay

Evolution of series expansion after charging: 1st order

 $B(z) = B_0 + B_1 z + B_2 z^2 + B_3 z^3 + B_4 z^4 + B_5 z^5 + \cdots$

1st field harmonics:

- Measure of field asymmetry
- Asymmetry drifts at low outsert fields
- Constant from 10 T
- → further investigation needed

Screening current decay

Evolution of series expansion after charging: 2nd order

 $B(z) = B_0 + B_1 z + B_2 z^2 + B_3 z^3 + B_4 z^4 + B_5 z^5 + \cdots$

2nd field harmonics:

- Measure of field curvature
- Drifts towards more positive values (= less screening curr. effect)
- Lower drift at high outsert fields
- \rightarrow expected behavior

Insert offset

Load cell readout during outsert & insert charging:

• 115 N centering force ≠ -9 mm misalignment

Other explanations?

- Force measure error?
- Asymmetric screening current induction?
 - tilt of the insert coil?
 - tilt of the REBCO layer?
 - → offset should decay after charging
 - → offset should increase with field

Insert offset

<u>Tilt of the REBCO layer \rightarrow asymmetric screening curr.</u>:

- Absolute value of offset increase with field
- Offsets decay after charging

Summary & outlook

<u>Outlook</u>

- Repeat experiment with less hall probe separation
 - \rightarrow more data points in field center \rightarrow better for fitting
- Investigate why insert field offset ≠ measured force
 - main field increases independent of outsert field
 - → expected, magnetic relaxation of REBCO is field independent
 - 1st harmonics (field asymmetry) drifts only at low outsert fields

 needs further investigation
 - 2st harmonics (field curvature) drifts towards positive values (= less screening curr. effect), lower drift at high outsert fields
 → expected, high outsert fields homogenize field alignment
 → I/I_c more homogeneous → homogenous screening curr.

Thank you for your attention

http://supra.unige.ch https://www.bruker.com/

Christian Barth

9/20/2017

REBCO magnetic relaxation

3 mm wide SuperPower REBCO tapes:

- Logarithmic magnetic relaxation
- Independent of field
- ≈3.4 % / decade
- → 33x the main field Drift (0.1% / decade)

<u>???</u>

perpendicular: B || c parallel: B || ab

Decay of the screening currents P

Relaxation of the central magnetic field:

- Logarithmic decay
- Independent of field
- 0.08 % / decade
- → close to calculated main field drift (0.1% / decade)

