Transposed high current cables made with strong Bi2212 superconductor wire

Alexander Otto (PhD)

President and CEO

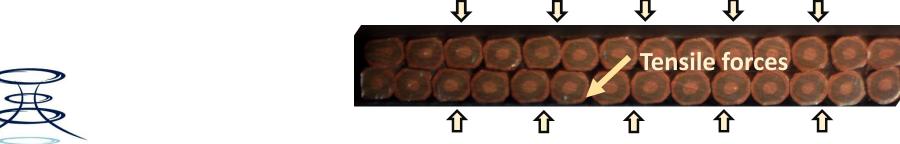
Acknowledgements & Collaborators

Development network

- -Plasma Science & Fusion Laboratory at MIT (Cabling line)
- Profs Yuki Iwaza and John Voccio (Ic testing)
- -Francis Bitter Magnet Laboratory at MIT (Ic testing)
- -Applied Superconductivity Center at Florida State University (Wire dev't, testing)

Funding

- -DOE Phase 1 SBIR DE-SC0017709 (Just started)
- -DOE Phase 2 SBIR DE-SC0011334 (Just finished)
- -Solid Material Solutions, LLC


Objectives

- ☐ Strong round & rectangular HTS wires
 - Like proven LTS Nb3Sn wires, but with superior Je(B, T) and still affordable
 - Built on unique Bi2212 properties, with our strengthening, dev't expertise
 - Reaction to achieve high Je does not require tape shape
 - As low-cost / m as 1G tape, but with lower \$/kAm price due to higher Je(4.2K)
- Transposed cables for robust, low loss coils with these wires
 - Like proven LTS Nb3Sn cable designs
 - But with superior Je(B,T) while meeting all other requirements

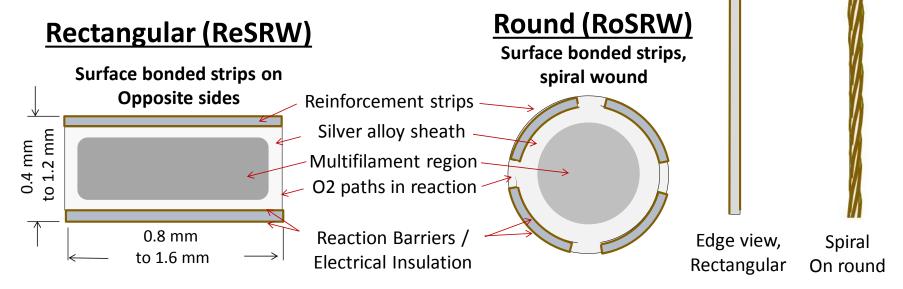
Objectives

- ☐ Strong round & rectangular HTS wires
 - Like proven LTS Nb3Sn wires, but with superior Je(B, T) and still affordable
 - Built on unique Bi2212 properties, with our strengthening, dev't expertise
 - Reaction to achieve high Je does not require tape shape
 - As low-cost / m as 1G tape, but with lower \$/kAm price due to higher Je(4.2K)
- ☐ Transposed cables for robust, low loss coils with these wires
 - Like proven LTS Nb3Sn cable designs
 - But with superior Je(B,T) while meeting all other requirements
 - ☐ HEP design targeted
 - The LTS Rutherford round wire cable type below (CERN)
 - Compression, tension tolerant as needed

Compressive forces

Applications

→ Particle Accelerator	→Fusion Development	
Physics – quadrupole, saddle / racetrack Proton therapy – large solenoid	Tokomak central solenoid → Ramped field, large coil	
(SMES / Transformer)	(Generator / Motor)	



Strong Wire? Attach Reinforcement

- Why? Silver cannot be modified to attain required stress tolerance
 - Modulus too low, ~ 80 GPa versus > 150 GPa needed
 - Annealed by reaction so even weaker than just from low modulus
- Why rectangular initially? Easier to produce, prove approach basics
 - Plus better cabling density is likely without much deformation
 - And, lower contact pressures, with much fewer internal damage issues
- Round development? Now ongoing with cabling starting soon

Strong Bi2212 Wire Designs

Reinforcement strips bonded to some surfaces

Rectangular square to ~ 2:1

Round 0.8 mm – 1.6 mm diameter

Strip dimensions as needed, 10% - 50% by area

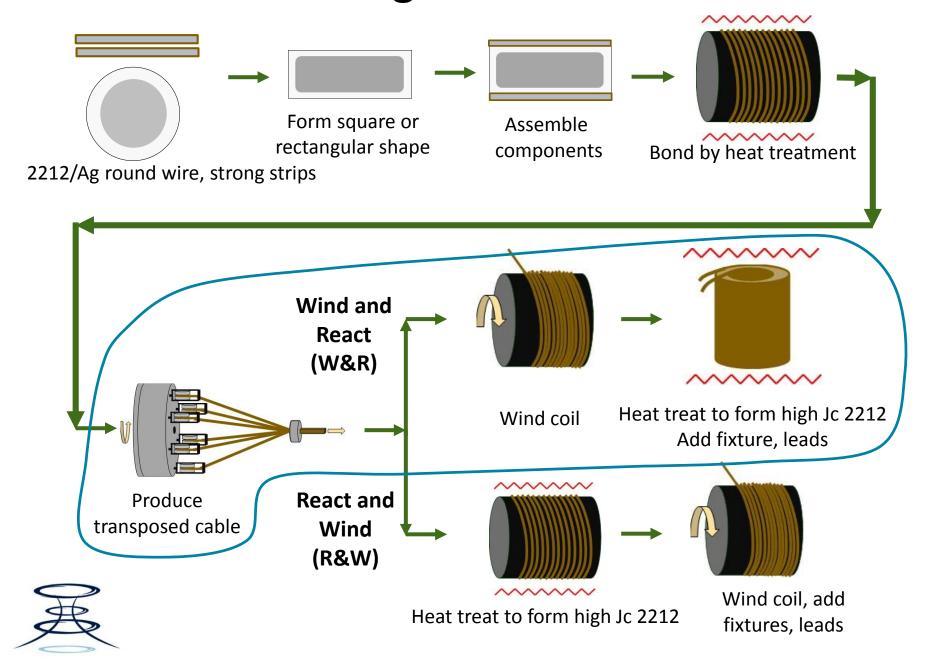
Stress tolerance 250 to ~600 MPa

Use modes Wind & React, React & Wind

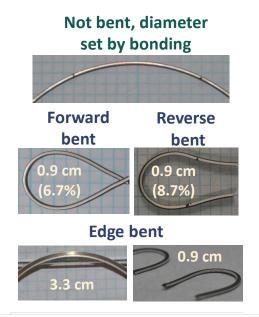
This approach enables:

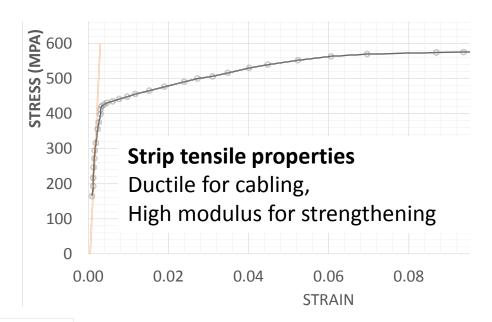
- high Je Bi2212 to form by oxygen exchange between the 2212/Ag core and atmosphere during reaction
- ☐ needed strength and prevention of contact damage
- many design variations
- ☐ straightforward, scalable, low cost production

ReSRW with core wider than strips



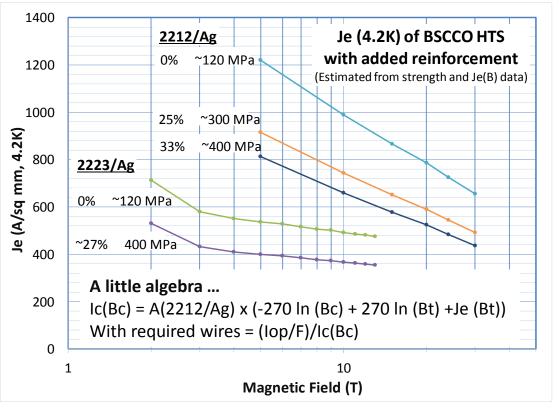
Long ReSRW on cabling reel






1st Process: Rectangular Wire → Cable → Coil

Wire Suitability for Cabling Before Reaction



Tests indicate

- Sufficient ductility
- Adhesion for retained integrity
- Good Je even with 1 atm reaction
- No leakage or other defect
- → Great news for cabling!

Analysis of Je for wires needed, dimensions

Je Present Status (2212/Ag)

Drawn round 1 atm ~350 SMS roll densified 1 atm 700-800	Wire State	Reaction	Je(4K, 5T) (A/mm2)
		_ 5.5	~350 700-800

Drawn or densified

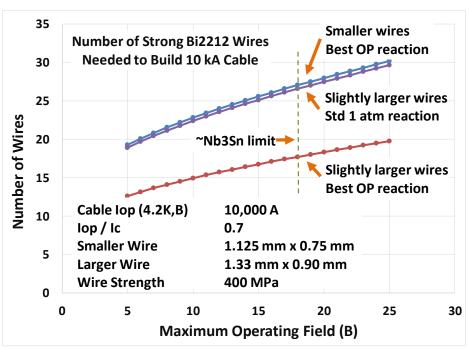
→ Je increased by mechanical densification

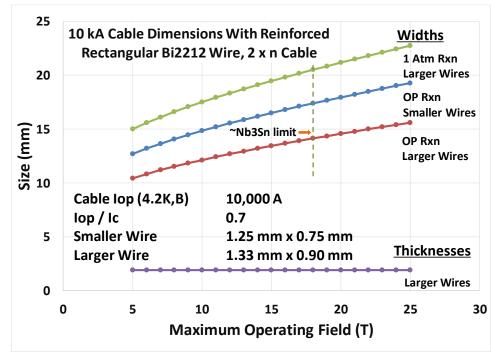
50 atm

1200

→ Je increased even more by gas pressure

Key points

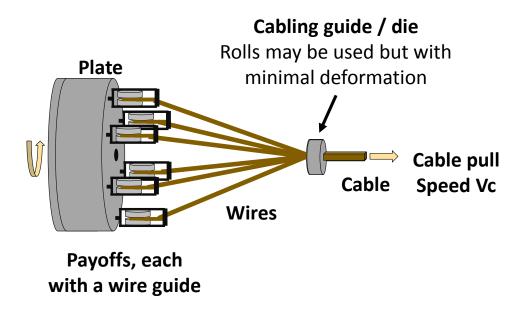

Je scaling well behaved with field and Jc Analysis completed for 10 kA cable dimensions, # of wires


For ideal build like this \rightarrow

Cable design analysis: baseline result

Result

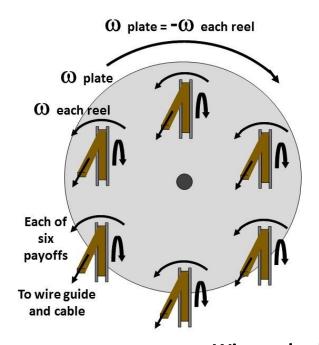
Dimensions like Nb3Sn 10 kA cables


For 25 T, 10 kA

1.9 mm x 25 mm for 1 atm reacted 30 wires 1.9 mm x 16 mm for 50 atm reacted 20 wires

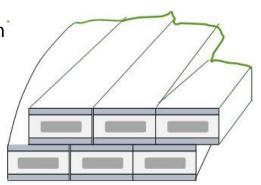
Cabling mode: without wire rotation, wrapping

Side view: illustration of planetary cabling



Pitch \sim Vc / ω

Plate rotates opposite to and at same rate as each reel


(used for some round wire Nb3Sn cables to minimize local strains)

Front view: plate & payoff reels

Wire and cable surfaces ~ parallel

- **Denser pack** with less deformation
- No wire to wire sintering
- Large contact areas with hard coating avoids local indent damage

Cabling Set up and Procedure Development

Cabling line

- At the Plasma Science & Fusion Center (PSFC) of MIT

Set up

- Designed and applied our guides and tooling
- Added our cable pull mechanism and take up

Procedures and process

- Developed procedures with rectangular copper wire
- Produced, tested copper cables with different designs

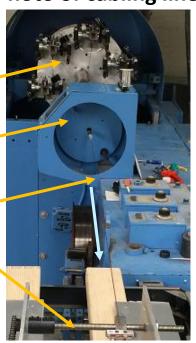

Photo of cabling line

Plate with payoff reels

Assembly die box

Cable

Part of take up

Cross section of copper analog cable

- Packing factor here is ~ 85% within the cable

Cabling Set up and Procedure Development

Cabling line

- At the Plasma Science & Fusion Center (PSFC) of MIT

Set up

- Designed and applied our guides and tooling
- Added our cable pull mechanism and take up

Procedures and process

- Developed procedures with rectangular copper wire
- Produced, tested copper cables with different designs

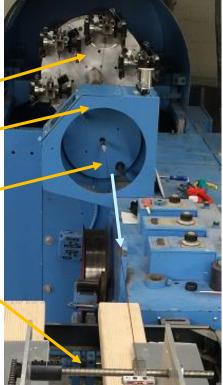

Photo of cabling line

Plate with payoff reels

Assembly die box

Cable

Part of take up

Cross section of copper analog cable

- Packing ~ 85% within this cable

Typical local deformation from consolidation rolling with round wire

Bi2212 Wire Transposed Cabling Feasibility

Cable exiting assembly die

→ stable in < 2 pitch lengths

ReSRW Wire Used

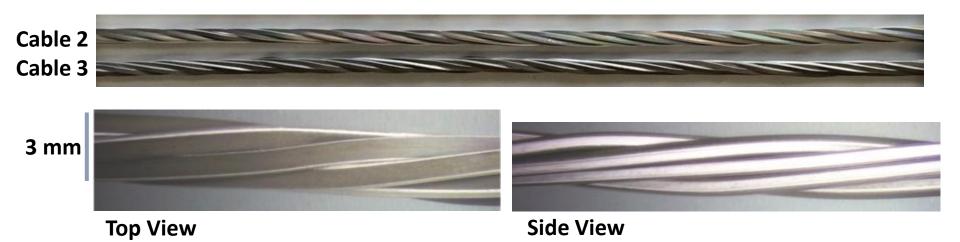
Dimensions 1.02 mm x 0.78 mm

Strips 0.9 mm x 0.1 mm

Strip content 24 % (~300 MPa)

Cabling 3 cables so far

wires 6


Pitch setting 4.5 cm

Wire tensions 14 N

Result: Uniform Bi2212 Cables, No Damage

Cable Inspection

Pitch ~ 4.7 cm measured, and uniform

Layup Wires retained ~parallel orientation to cable surface planes

Condition No sign of damage, cables very stiff

Width 3.1 mm
Thickness 2.3 mm
Packing fraction ~67%

Cable bend tests To 4.5 cm

Bend Limit At ~ 5 cm

Approach qualified and works

→ Wire handles process

Fabricated first mini cabled coils w/o damage

Coil production and tests

Coiling Wound 3 mini coils

Wind method By hand, ends free, some rebound

Diameters 5.5 cm

Control samples Wire pieces cut from cable ends **Cable condition** Wrapped with strip for reaction

Reaction At standard 1 atm

Inspection No sign of damage, reacted coils very stiff

Coil winding & reaction responses good

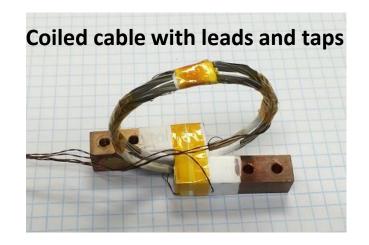
Ic tests so far: for wires (4K), coils (64K-70K)

Wire Ic's (4K, self field)

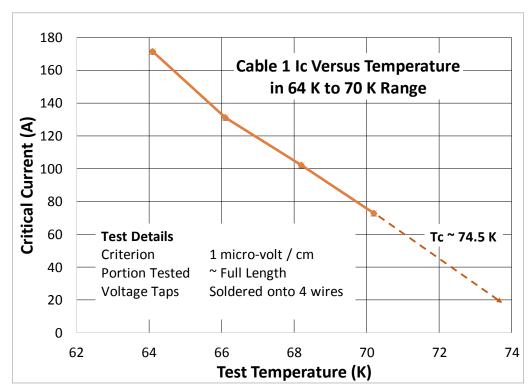
average Ic, cable 2 Ic std dev, cable 2

End pieces tested

940 A


2 %

Projected cable <u>Ic(4K, 5T)</u>

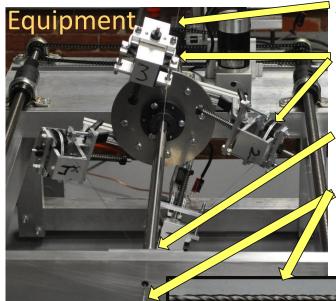

2 kA by scaling wire Ic's

Tested cable <u>Ic(64K-70K)</u>

170 A at 64K ~full length

Cable Ic tests at 4K in-field Pending

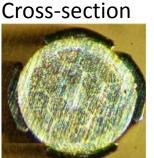
Ic data so far promising


But, additional data required

Looking to complete in-field 4.2K Ic tests

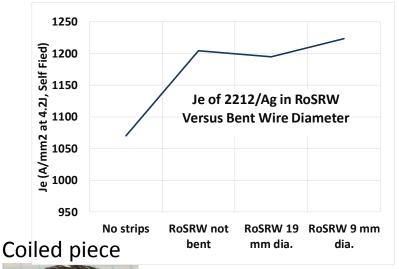
Now About RoSRW Cable Development

- Built and qualified equipment
- Developing design, process
- ☐ Testing Ic/Je, properties for cabling


2212/Ag round wire Strip payoffs

Assembly tooling

Assembled wire, >80% coverage



9 mm ϕ then reacted

Wire properties seem suitable for cabling

Next Steps

- Complete Ic (4K) testing of first cables
- Produce and test cables with more wires, longer lengths
- Build strong round wire cables and test first one by Dec. 2017
- Achieve 10 kA (~15 T) design like CERN cable first one Q1 2018
- Complete dev't & testing: LBNL, CERN, PSFC, NHMFL, others
- Integrate cable development with coil program(s)

Messages...

We demonstrated feasibility of making transposed cables with strong Bi2212 rectangular wire

Adapted and qualified cabling equipment and procedures

6-wire pay off (for now)

Planetary layup Capable of long lengths

Produced first cables with 1 mm wide wires in pre-reacted condition

Okay packing (~67%)

4.7 cm pitch Wire integrity retained

Tested bending, then wound & reacted 5.5 cm diameter mini coils

Coil-able to 5 cm dia.

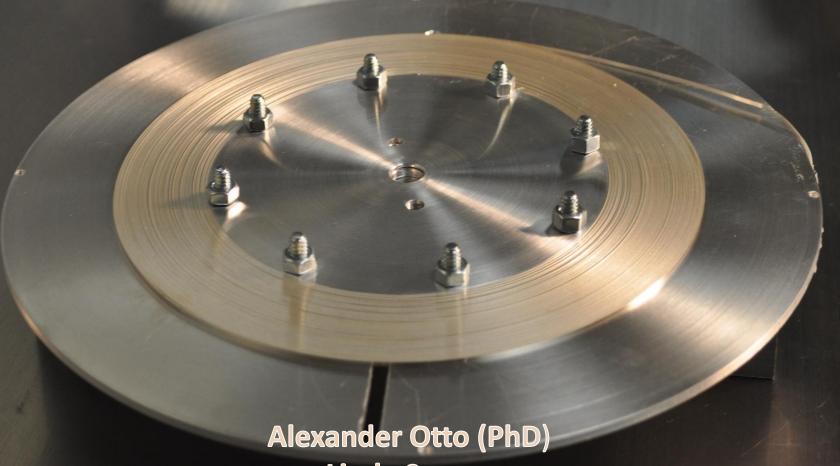
Cable integrity retained

No defects observed

Ic tests underway

Cabled wire Ic's(4K) ~940 A/mm2

Projected cable Ic(4.2K, 15T) \sim 1.5 kA


Preparing strong round & rectangular wire cables for dev't & testing

→ Very promising first results

For achieving strong, LTS-like 10 kA transposed HTS cable

THANK YOU

Linda Saraco

Solid Material Solutions, LLC

