An HTS Demonstrator Magnet for a Space Experiment (HDMS)

G. de Rijk, L. Bottura, E. Chesta, G. Kirby, L. Rossi
CERN
C. Facchinetti, S. Mari
ASI – Italian Space Agency
R. Iuppa
University of Trento and TIFPA
W.J. Burger
TIFPA – Trento Institute for Fundamental Physics and Applications
ECAS, September 2017, Genève
Searching for dark matter has few “golden channels”, among which signatures involving anti-matter.

The AMS-02 experiment represents the status-of-the-art for what concerns magnetic spectrometers operated in space.

It is operated on the ISS and has bending power as high as 0.8 T*m, obtained with a permanent magnet.

A Nb-Ti superconducting solution was initially explored, to get higher bending power and extend the dynamic range.

The project was abandoned after years of development, because of issues with the long-term cryogenics requirements.
AMS-02 proved to be extremely sensitive in the sub-TeV region, confirming that from 10 GeV on the flux of positrons exceeds the secondary production, by up to one order of magnitude at 100 GeV.

Whether related to DM annihilation or due to unknown astrophysical reasons (e.g. nearby sources), the excess demands to be followed up above 1000 GeV, for which AMS-02 is too small and has not sufficient bending power.
Weaker evidence for antiprotons, where still some tension is observed but data are not sufficient yet to assess the origin of the new features.

- Dark matter
 - Positrons at the 1-10 TeV scale
 - Antiprotons at the 1 TeV scale
 - Gamma rays at the TeV scale
 - Antideuterons at the GeV scale

- Spectral features at the “knee scale”
 - Protons at the PeV scale
 - Helias at the PeV scale
 - Ions at the 100 TeV scale

Gaëlle Giesen et al., JCAP 2015 10.1088/1475-7516/2015/09/023
Scientific objective for a new space spectrometer

measure cosmic anti-matter up to rigidities as high as 30 TeV/e.

INSTRUMENTED AREA

• The particle flux decreases by 99% every time we increase tenfold the energy. Keeping the experiment lifetime fixed this translates to instrument areas as large as 10-30 X AMS: **30-90 square meters.**

\[Q = \frac{\bar{B}[T] L[m]}{\sigma_p[m]} \]

BENDING POWER

• The maximum detectable rigidity (MDR or Q) of a magnetic spectrometer is proportional to BL*L/s. The bending power BL and the lever-arm-to-sagitta ratio are the only handles to act upon to increase the MDR by a factor of 60. Keeping fixed the detector size and assuming the sagitta resolution can be improved by a factor of 10, it remains to increase BL by a factor of 6: **up to 5 T*m.**

These requirements can be met only with dedicated efforts in matter of large-scale superconducting magnet applications for space.
Concept for a new space spectrometer

- The toroidal configuration exploits the magnetized volume best.
- This allows to develop effective areas as large as 10 m\(^2\) with volumes as low 1.5 m\(^3\).

Current proposals focus on increasing the lever arm to gain a factor of 10 on Q (3 on BL and 3 on d/\(\sigma\))

To gain a factor of 100 on Q, you need a factor of 10 on BL and a factor of 10 on d/\(\sigma\)
Detectors

R&D STAR vertex detector @ BNL

R&D ALICE inner tracker @ CERN

Current microstrip resolution in AMS-02 is 10 um
A new space spectrometer

Project HDMS: **HTS Demonstrator Magnet for Space**

- Ambitious project to demonstrate technical feasibility for using high field HTS magnets technologies under development for particle accelerators in aerospace applications for science
- Target mission (design driver): high resolution astro-particle spectrometer in space
- Possible secondary applications:
 - active astronauts radiation shielding, high power electric propulsion, medical analysis (NMR), compact radioisotopes production
- Project framework:
 - implementation of a bilateral collaboration agreement between CERN and ASI
 - granted CERN Knowledge Transfer Fund for Aerospace Application project
- Project status: approved by CERN and ASI, expected to start before end 2017

Strong synergy with EuCARD2/ARIES and the CERN HTS program for High Field HTS magnets
Base for the application:
EuCARD2 Conductor

HTS: YBCO/REBCO coated conductor

EuCARD2 – WP10
Future Magnets for post-LHC colliders

Final Goal ARIES
Base for the application: EuCARD2 dipole wound with roebel cable

FM0.4 sub-size coil
Successful test: 12 kA

FM2 magnet for 3-5 T under construction
Potential secondary application: magnetic shielding for spaceships (FP7-SR2S)

ASI, INFN, CERN, CEA and other Institutions

Coil based on MgB2 technology: results have not been very successful

Magnet design mostly based on flat coils arranged in toroidal shape – 3-5 T
Technical objectives:

- Design a compact dipole field demonstrator, racetrack-type and based on CERN Accelerator Technology under development future colliders

- Develop the conductor suitable for a space magnet, based on the HTS tape developed for CERN in EuCARD2/ARIES

- Manufacture a small race track demonstrator (300 mm < L < 1000 mm) to test conductor and most of magnet technologies

- Test of demonstrator in a wide temperature range, 4 K < T_{op} < 80 K.
Conceptual Pre-design

Operation at 10 K – 10 T (same as 20 K – 5 T)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical current density (field orthogonal)</td>
<td>J_c</td>
<td>14</td>
<td>kA/mm²</td>
</tr>
<tr>
<td>Maximum engineering current density (tape)</td>
<td>$J_{c,\text{en}}$</td>
<td>355</td>
<td>A/mm²</td>
</tr>
<tr>
<td>Maximum engineering current in the coil</td>
<td>$I = J_{c,\text{en}} \times D \times H$</td>
<td>256</td>
<td>kA</td>
</tr>
</tbody>
</table>

Power consumption - Joints

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum tape length</td>
<td>f</td>
<td>90</td>
<td>m</td>
</tr>
<tr>
<td>Number of tapes per pancake</td>
<td>$N_t = F / N_p$</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Joint resistance</td>
<td>R_j</td>
<td>30</td>
<td>nΩ</td>
</tr>
<tr>
<td>Pancake resistance</td>
<td>R_p</td>
<td>210</td>
<td>nΩ</td>
</tr>
<tr>
<td>Coil resistance</td>
<td>$R_c = N_p \times R_p$</td>
<td>420</td>
<td>nΩ</td>
</tr>
<tr>
<td>Maximum power consumption at 5 K - 20 T</td>
<td>$P = R_c \times I^2$</td>
<td>0.143</td>
<td>W</td>
</tr>
<tr>
<td>Maximum cryo power needed at 5 K – 20 T (COP 300)</td>
<td>P_{cryo}</td>
<td>2.7</td>
<td>kW</td>
</tr>
<tr>
<td>Max power consumption at 10 K - 10 T (same as 20K-5T)</td>
<td>$P = R_c \times I^2$</td>
<td>0.170</td>
<td>W</td>
</tr>
<tr>
<td>Maximum cryo power needed at 20 K – 5 T (COP 150)</td>
<td>P_{cryo}</td>
<td>0.396</td>
<td>kW</td>
</tr>
</tbody>
</table>

Expected magnetic field intensity at $J_{c,\text{en}} = 330$ A/mm². No background field considered.
Collaborative program between ASI and CERN, based on 7 milestones with a 3 year duration

<table>
<thead>
<tr>
<th>Phase 1: Requirements definition</th>
<th>Phase 2: Preliminary design</th>
<th>Phase 3: Technology validation</th>
<th>Phase 4: Detailed design</th>
<th>Phase 5: Manufacturing/assembly</th>
<th>Phase 6: Testing</th>
<th>Phase 7: Project wrap up</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO meeting</td>
<td>SRR</td>
<td>PDR</td>
<td>TRA</td>
<td>CDR MRR</td>
<td>TRR SAR</td>
<td>Final meeting</td>
</tr>
</tbody>
</table>

Start of project: October 2017,
End 2017: Recruitment of a fellow
Conclusions

- **HTS Demonstrator Magnet for Space** project is launched
- Will apply accelerator HTS magnet technology for a space spectrometer magnet
- Necessary step for the next step space spectrometer to look at high energy antimatter in space
- Good example how different fields can advance together