

Results of the Development of a High Current HTS Cable for Accelerator Magnet Applications

Presented by L. Bottura on behalf of the EuCARD2 WP10 (Future Magnets) Collaboration

EUCAS 2017, Geneva, September 17th-21st, 2017

Outline

- Scope
- Baseline choices
- Tapes
- Cables
- Characterization
- Outlook

Scope of the program

- WP10: Develop a 5 T dipole magnet with a bore of 40 mm diameter with consideration of accelerator quality (ramping operation, field quality, protection)
- WP10.2: Develop a 10 kA-class conductor suitable for the coil winding
 - High current density (J_E > 400 A/mm²)
 - Flexible, for winding on a small radius (≈ 20 mm)
 - Long length (UL > 30 m)
 - Enough stabilizer for practical detection and protection times
 - Transposed (is this just common wisdom ?)

Initial targets (kick-off on 14 June 2013)

parameter	units	target
J _E (20 T, 4.2 K)	(A/mm²) 《	600
σ (I _C) within a unit length	(%)	10
M(1.5 T, 10 mT/s)	(mT)	300
Range of σ _{transverse}	(MPa)	100
Range of $\epsilon_{longitudinal}$	(%)	±0.3
Unit length	(m)	100

parameter	units	target
I _C (20T, 4.2 K)	(kA)	10
Provisional width	(mm)	10
Provisional thickness	(mm)	1.5
Effective contact resistance	$(\mu\Omega)$	5

Material and geometry

EuCARD2 Roebel dummy

REBCO

- High J_E (≈ 800 A/mm²) and steady improvement (BZO, stoichiometry control, SC layer thickness, smaller substrate)
- High mechanical strength substrate
- Trivial coil technology (conductor "ready-to-go", no HT processing)
- Available from several producers worldwide

ROEBEL cable

- Compact cable, high J_E
- Transposed cable vs. transverse field
- Easy bending in the parallel direction
- Can be produced automatically on long lengths (e.g. GCS, KIT)

Baseline cable designs

REBCO Tape

Tape width (before punching)	(mm)	12
SC layer	(μ m)	1 2
Cu layer	(μ m)	2 x 20
Substrate	(μ m)	50 100
Tape thickness	(mm)	0.1 0.15
Critical current (4.2 K, 20 T perpendicular)	(A)	≥ 670

Protection!?!

Roebel cable

Number of tapes	(-)	1315 (17)
Width	(mm)	12
Thickness	(mm)	0.9 1.1 ± 0.1
Transposition pitch	(mm)	226 300
Critical current (4.2 K, 20 T perpendicular)	(kA)	≥ 4.8 5.8

Allow for tape slippage during winding

Tapes

Tape production for EuCARD2

See: 2MO4-01

- A total of more than 1 km of 12 mm tape was produced:
 - All tapes above the minimum set J_F of 400 A/mm²
 - most tapes, and especially present production, largely exceed the target J_F of 600 A/mm² (on a 100 μm substrate!)
 - Record J_F(4.2 K, 18 T) 956 A/mm² (not yet used in cable)
 - Production length is 90 m, cut for processing to 30 m
- An additional length of about 2 km procured by CERN (different producers) as complement material to the EuCARD2 program

Homogeneity

Cables

t = 1.6 mmw = 13.3 mm

t = 2.1 mmw = 12.9 mm

t = 1.1 mmw = 12.3 mm

↓ time

Punch-and-coat

Karlsruhe Institute of Technology EUCARD²

- Standard Roebel production sequence
 - Produce Cu-coated tape
 - Punch meanders
 - Assemble cable
- Modified Roebel production sequence
 - Produce Ag-capped tape
 - Punch meanders (less than 5% I_C degradation !)
 - Cu-coat (dog-boning!)
 - Assemble cable

2x40 μm coating

2x20 μm coating

Optimized 2x20 µm coating

Cable technology

Punching of coated tape

Presence of burrs and danger of de-lamination

Punch-and-coat sequence

Tapes are enclosed in the Ag and Cu cap that seals them off

Cable technology

Flexible cutting tool

Multi-punching step, larger final tolerances

Optimized tool

See: 4LP4-08

First full length (January 2017)

Semi-automatic Roebel cabling machine at KIT Reel-to-reel system demonstrated up to **100 m**, with the possibility to upgrade the process to lengths in the range of 200...300 m

Coil I_C measurements

The cables reach $I_C(B,T)$ (as far as we could tell from the data analysis) Stability and training are not longer a feature (I am out of job)

Master plot

Cable Ic

- -GCS Cable 15 SPower str. →KIT Cable 10 SPower str.
- → KIT Cable 9 SPower str. -SOx Cable 15 SOx str.

Transverse forces

J. Fleiter, C. Lorin. A. Ballarino

Impregnation as means to spread stress

Ch. Barth

KIT: 1:1 epoxy-fused silica

G. Kirby, J. van Nugteren

CERN: CTD101G

lc vs. F_{transverse}

Impregnation provides a solution to stress concentration. Impregnated cables withstand stress up to 400 MPa!

Hysteresis & coupling

- Losses are dominated by hysteresis, coupling (inter-tape currents) are not visible
- Hysteresis scales with H₀/H_p as expected (Norris' strip)
- Assemblies of tapes are magnetically coupled, i.e. as a monolithic conductor, but not quite fully

Achievements (closing on 31 April 2017)

Tape

Cable

parameter	units	target
J _E (20 T, 4.2 K)	(A/mm²)	600
σ (I _C) within a unit length	(%)	10
M(1.5 T, 10 mT/s)	(mT)	300
Range of $\sigma_{transverse}$	(MPa)	100
Range of $\epsilon_{longitudinal}$	(%)	±0.3
Unit length	(m)	100
parameter	units	target
I _C (20T, 4.2 K)	(kA)	10
Width	(mm)	12 ± 0.1
Thickness	(mm)	1.0 ± 0.1
Effective contact resistance	$(\mu\Omega)$	5

What is left to do?

- A few issues remain open:
 - Complete the validation of the final cable geometry in cable and magnet tests, especially including thermal cycles and a check for degradation
 - Verify quench detection and protection, measure temperatures, propagation speed and voltage development
 - Understand magnetization values (some surprising effect on field quality) and their control, including coupling and the effect of striation
 - Define longitudinal strain limits for winding and operation
 - Joint technique suitable for integration in a magnet construction
- EuCARD2 WP10 (Future Magnets) has provided a strong focus to the development of HTS cables for large-scale accelerator magnets. How to maintain momentum?
 - On-going EU-FPT ARIES provides continuity
 - More material is needed, tapes and cables to feed the magnet program

A few references at EUCAS

EuCARD2 financed, supported or related

1LP3-01: S. Otten, "Inter-strand resistance in REBCO Roebel cables and effect on AC loss"

4LP4-11: Y. Yang, "Quench Characteristics of 2G YBCO Roebel Cable in a Pancake Coil"

1LP3-01: S. Otten, "Inter-strand resistance in REBCO Roebel cables and effect on AC loss"

2MO4-01: A. Usoskin, "Double-disordered HTS coated conductors and their assemblies aimed for ultrahigh fields: large area tapes"

3LO3-08: P. Gao, "AC losses and inter-strand resistance in impregnated ReBCO Roebel cables"

3MP5-16: C. Petrone, "Measurement and Analysis of the Dynamic Effects in an HTS Dipole Magnet"

3MO2-07: Y. Yang, "AC Losses of Roebel Cables with Striated 2G YBCO Strands"

4LP4-08: A. Kario, "Advanced intermediate lengths of punch and coat processed HTS-Roebel cables in EuCARD2"

4LP1-01: G. Kirby, "An High Field Insert Accelerator Class Dipole Magnet Constructed with Roebel Multi-tape HTS Cable"

4LP3-11: X. Sarasola, "Test of the First HTS Demonstrator Coil in the 11 T Background Field of the SULTAN Facility"

4MP4-07: J. Murtomäki, "Investigation of REBCO Roebel Cable Irreversible Critical Current Degradation Under Transverse Pressure"

Further programs and relevant work

4LO2-02: J. Van Nugteren, "ReBCO 20T+ Dipoles for Particle Accelerators"

3LO2-06 L. Rossi: "An HTS Magnet Demonstrator for Space Experiment"

4MP7-09: M. Matras, "Measurement at 4 K of normal zone propagation velocity in commercial REBCO conductors"

HTS for 5 T/40 mm

PLD-300

Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

Extrinsic defects

PLD deposition 5 wt% of BZO in the YBCO target

Intrinsic and extrinsic defects

PLD deposition 5 wt% of BZO in the YBCO target 0.2...0.5 mbar O₂ pressure variation

Zoo of tapes

Magnetization

UNIVERSITEIT TWENTE.

UNIVERSITEIT TWENTE.

