

Overview of the Quench Heater Performance for MQXF, the Nb₃Sn low-β Quadrupole for the High Luminosity LHC

Susana Izquierdo Bermudez

G. Ambrosio, H. Bajas, N. Bourcey, G. Chlachidze, J. Ferradas Troitino, P. Ferracin, J. C. Perez, F-O. Pincot, E. Ravaioli, C. Santini, S. Stoynev, E. Todesco, G.L. Sabbi, G. Vallone

Outline

- Introduction
- Quench Heater Performance
- Quench Heater Failures
- Conclusions

Outline

- Introduction
- Quench Heater Performance
- Quench Heater Failures
- Conclusions

MQXF

- LHC IR upgraded as a part of HiLumi project
 - Quadrupoles: NbTi → Nb₃Sn
- Target: 132.6 T/m
 - 150 mm coil aperture, 11.4 T B_{peak}
- Q1/Q3 (by US-AUP Project)
 - 2 magnets MQXFA with 4.2 m
- Q2a/Q2b (by CERN)
 - 1 magnet MQXFB with 7.15 m
- Different lengths, same design

Overview of Magnet Parameters

Due to the high stored energy density (130 MJ/m³) and the low copper stabilizer fraction (55 %), quench protection is particularly challenging.

LHC-MB

- $B_p(I_{nom}) = 8.6 \text{ T}$
- $J_{\text{overall}}(I_{\text{nom}}) = 356/442 \text{ A/mm}^2$
- $J_{cu}(I_{nom}) = 763/932 \text{ A/mm}^2$
- $e_{m} (I_{nom}) = 71 \text{ MJ/m}^{3}$

HL-LHC 11 T

- $B_p(I_{nom}) = 11.8 \text{ T}$
- $J_{\text{overall}}(I_{\text{nom}}) = 523 \text{ A/mm}^2$
- $J_{cu}(I_{nom}) = 1439 \text{ A/mm}^2$
- $e_{m}(I_{nom}) = 130 \text{ MJ/m}^{3}$

HL-LHC MQXF

- $B_p(I_{nom}) = 11.4 T$
- $J_{overall}(I_{nom}) = 469 \text{ A/mm}^2$
- $J_{cu}(I_{nom}) = 1330 \text{ A/mm}^2$
- $e_{\rm m}(I_{\rm nom}) = 129 \text{ MJ/m}^3$

MQXF – Key protection features

Quench heaters

Temperature rise in the conductor through due to the heating of metal strips attached to the coil.

CLIQ

(Coupling-Loss Induced Quench)

Temperature rise in the conductor due to the coupling current losses arising from a change on the magnetic field.

Quench Heater Design Criteria

- In order to minimize the time needed to start a quench (quench heater delay):
 - Heater power and energy sufficiently high → 150 200 W/cm²
 - Insulation heater to coil shall be minimized, without compromising the electrical integrity
 → 0.050 mm of polyimide
- Peak voltage heater to coil ± 450 V → Copper platting to reduce overall strip resistance.
- Quench shall propagate in between heater stations within ~ 5 ms → Distance in between stations ~ 100 mm
- Shall cover a large portion of the coil (~ 80 %)

Quench Heater (Trace) Fabrication

- PCB Technology
 - Copper electroplated to the stainless steelpolyimide base material.
 - Etching of the copper, nickel and stainless steel to the required heater pattern.
 - $RRR_{CII} = 25-40$
- Polyimide is perforated:
 - Prevent detachments on the inner surfaces, experienced in previous LARP magnets.
 - Improve adhesion during coil impregnation.
 - Better cooling during magnet operation.
- DC voltage test (3 kV under slight pressure) at the end of the trace fabrication process.

Coil Fabrication

Coil after reaction

Coil after impregnation

- Trace installed in the coil before impregnation, covered by a layer of S2glass insulation.
- Heater powering wires soldered to the heater strips "splice block soldering pockets"

Quench Heater Electrical Verifications

- Resistance measurements.
- Electrical insulation, 2.5 kV DC voltage test (3 kV from summer 2017)
 - All coils passed (22 produced by CERN, 9 produced by LARP)
 - Two practice coils were pushed to the limit, showing good heater to coil electrical insulation up to 5 kV.
- Heater discharge tests
 - 80 A current discharge (23 J)
 - All coils passed.

Outline

- Introduction
- Quench Heater Performance
- Quench Heater Failures
- Conclusions

Overview on magnets tested

Single Coil Assemblies

MQXFSM1 (1.2 m)

- Scalability of coil technology
- Scalability of quench heater performance

MQXFPM1 (4 m)

Tested @ BNL. 2016

Short Models (1.2 m length)

Goal of guench protection tests: Verify that the baseline quench protection parameters are suitable for quench protection performance

MQXFS1a/b/c

MQXFS3a/b

MQXFS5a

2016-2017

Tested @ FNAL, Tested @ CERN, Tested @ CERN, 2016

2017

Prototypes (4/4.2/7.15 m)

Final validation of the quench protection performance.

MQXFA1 (4 m)

Test in progress @ BNL

Short Model Magnets - MQXFS

MQXFS1

- RRP Nb₃Sn conductor
- 1st generation coils
- 2 coils produced by CERN/2 coils produced by LARP

MQXFS3

- RRP Nb₃Sn conductor
- 2nd generation coils, baseline quench heater lay-out
- 3 coils produced by CERN/1 coil produced by LARP

MQXFS5

- PIT Nb₃Sn conductor
- 2nd generation coils, baseline quench heater lay-out
- 4 coils produced by CERN

MQXFS quench heater protection studies

- Goal of short model quench protection tests → Verify that the baseline quench protection parameters are suitable for quench protection performance:
 - Assumptions on quench detection and validation (5 + 10 ms) are adequate.
 - Quench heaters are able to:
 - Quench a large portion of the coil in a sufficiently short time.
 - Quench the magnet at all operating current levels.

	MQXFS1	MQXFS3	MQXFS5
Quench Heater Delays	✓	✓	Not yet
Quench Integral Studies (QH)	~	✓	Not yet
Minimum Quench Energy	✓	Not yet	Not yet
Quench Integral Studies (QH+CLIQ)	✓	Not yet	Not yet
CLIQ studies	✓	Not yet	Not yet
EE discharge (quench back)	✓	Not yet	Not yet

Initial quench propagation and detection

- A good characterization of the initial quench propagation is important because it determines the time needed to detect a normal zone:
 - Cable level: measurements on FRESCA [1].
 - Magnet level: analysis on natural quenches during training.

THEA 1-D conductor model: conductor is a continuum solved with accurate (high order) and adaptive (front tracking) methods:

Experimental data from H. Bajas.

Quench heater delay

The experiment

- Magnet ramped to a specific current level.
- Quench induced on the magnet, through the firing of a heater strip.
- Upon quench detection, firing of the rest of the quench protection elements (energy extraction and rest of the heater strips)

The model

- 2D FEM simulation (COMSOL), solving the heat equation until first point in the cable reaches $T_{\rm cs}$
- One turn at a time.
- Half of heater period is enough due to symmetry.

Outer layer quench heater delay

- Measured delays in agreement with expectations.
- Good reproducibility at high current.
- Larger spread at lower current not critical since we have a lot of margin in terms of protection.

Experimental data from G. Chalchidze, S. Stoynev and H. Bajas.

Inner layer quench heater delay

- In MQXFS1, inner layer heater delays are around 10 ms longer than expected.
- Delays in agreement with the model for MQXFS3.

Quench integral studies

The experiment

- Magnet ramped to a specific current level.
- Quench induced on the magnet, through the firing of OL or OL+IL heaters.
- Study of the current decay, resistance growth and temperature rise.

The models

- 0-D model (running time: seconds)
 - Computes current decay and resistance growth assuming that the magnet is fully or partially quench at the minimum quench heater delay.
- ROXIE 2D (running time: minutes)
 - Includes heat propagation from heater to coil
 - Includes electromagnetic and thermal transients occuring during quench.

- Supermagnet 3D (running time: hours)
 - THEA-POWER coupling, using a second order thermal network among coil turns [1]

[1] S. Izquierdo Bermudez, et al., Quench modeling in high-field Nb₃Sn accelerator magnets, in Proc. 25th ICEC 25 ICMC 2014

Quench integral studies at nominal current

properties

QI [MA²]		T _{adi} [K] (B _p = 13 T, RRR = 140)		
OL only 28.9		240		
OL + IL*	25.7	200		

^{* 3} inner layer strips not operating

response (QI)

- In case of a natural quench, QI about 5 MA2s larger at nominal current (~ 70 K):
 - Detection time (~ 5 ms)
 - Validation time (10 ms)
 - Heater firing time (~ 1-4 ms)
- The average coil temperature at the end of the current decay is 100-120 K.

Reproducibility at nominal current

- Current decay and resistance growth is very reproducible for two quenches at nominal using only OL heaters
 - QI from QH fired (excluding heater firing delay):
 - $hh0043 = 28.94 MA^2s$
 - $hh0046 = 28.91 MA^2s$

Quench integral – 0D

- Assumption: magnet is fully or partially quench at the minimum quench heater delay.
- Cases:
 - OL-QH: Only turns in contact with the outer layer quench heaters
 - OL: All outer layer turns quench
 - OL+IL: All coil turns quench
- Very simple approach, only a zero-order approximation of the effectiveness of the heaters!!

Experimental data from H. Bajas.

→ Inner layer heaters considerably reduce the quench load, in particular at high current

Quench integral – ROXIE 2D

- Good agreement on the quench integral and magnet resistance at the end of the decay at different current levels.
- When comparing total voltage per coil block, large imbalance among coils in the same magnet not captured by the model.

Dotted lines: ROXIE

Continuous lines: Measurements

Minimum Quench Energy

The experiment

- Magnet ramped to a specific current level.
- Heater power supply voltage gradually increase to find the minimum voltage required to start a quench (R, C constants)

The results

- Outer layer quench heaters can quench the magnet at all current levels.
- With the nominal heater powering parameters, inner layer heaters cannot quench the magnet at current levels lower than 4 kA (Q2a/b) and 7 kA (Q1/3)

Outline

- Introduction
- Quench Heater Performance
- Quench Heater Failures
- Conclusions

Overview on quench heater failures

	OUTER LAYER	INNER LAYER		
MQXFS1	All OK	3 out of 8 heater strips weak electrical insulation to coil at cold, never powered during test (failure at 750 V instead of 1kV)		
MQXFS3	All OK	3 out of 8 heater strips failed during powering test		
MQXFS5	All OK	Inner layer heaters not powered, to decouple the effect of the heater powering and the magnet quench.		

Failure modes

- Failure in the extremities, at the connexion level:
 - Heater strips were shorter than the coils, resulting on a mechanically weak assembly.
 - Heater design was updated, and this weakness is not present in the recent coils.

- Failures on the magnet straight part. Possible sources:
 - Heater fabrication defaults (unlikely).
 - Heater damage following a S2-glass to heater detachment.

Detachments - Observations

- After powering test, strong signs of delamination on the coil inner surface, mainly on the stainless steel heater stations.
- Destructive inspection of LARP coil 7 have shown that the source of delamination is the S2-glass to metal interface.

Detachments - Observations

- Detachments are not only present on the heater stations, also in the coil ends.
 - A coil without inner layer trace is under production to study the "bubbles" formation in absence of the trace.

Coil LARP 7 before powering test

Coil LARP 7 after powering test

Delamination - Risks

■ Highest risk → degradation of the conductor insulation.

Heater to Polyimide Detachments

- Even if the primary source of delamination is the weak metal to glass adherence, heater to polyimide delamination was also observed in several locations.
 - A trace made with a stronger polyimidemetal base material under production.

MQXFS5 - Detachments

View of MQXFS5 aperture after powering test

- Inner layer quench heaters were not powered in MQXFS5, to decouple the effect of the heater powering and the magnet quench.
 - Detachments in the heating stations and coils ends.
 - The main source of the bubbles formation is the increase of the coil temperature during quench and not the heater powering.

Electrical Integrity after Powering Test

- In MQXFS1, heaters were tested only up to 1 kV.
 - All passed.
- In MQXFS3, electrical insulation was verified up to 2.5 kV:
 - All outer layers heaters passed.
 - 7/8 of the inner layer heaters failed.
- In MQXFS5, only inner layer heater were tested:
 - All heaters failed the 3 kV insulation test, with a breakdown voltage 2.6-2.9 kV.
 - When re-tested at 1 kV, 3/8 heaters were strongly degraded (leakage current > 4mA at 0.2 kV).

Insulation Voltage [KV] QH to coil

	OL-HF OL-LF		IL				
Magnet	Coil	R	L	R	L	R	L
	3					>1.0 ³	>1.0 ³
MQXFS1	5	> 1 kV			>1.0 ¹	>1.0	
	103				>1.0	>1.01	
	104				>1.0	>1.01	
	7	2 E IAV				<2.5	<2.5
MQXFS3	105					0.1 ²	0.1
	106	> 2.5 kV			<2.5 ²	<2.5 ²	
	107					0.5	>2.5
MQXFS5	203					>1.0 ³	0.2^{3}
	204	Insulation test not performed after cold powering test			0.2^{3}	>1.0 ³	
	205				0.2^{3}	>1.0 ³	
	206				>1.0 ³	>1.0 ³	

- 1. Did not pass electrical tests at 1.9 K, so never powered at 1.9 K.
- 2. Failed during powering test.
- 3. Heaters never powered at cold.

Outline

- Introduction
- Quench Heater Performance
- Quench Heater Failures
- Conclusions

Conclusions

- Outer layer quench heaters are able to quench a large portion of the coil is a sufficiently short time, behaving as expected.
 - Combination of outer layer heaters and CLIQ (also behaving as expected) provides a reliable and fully redundant protection system.
- About 30 % of the inner layer quench heaters failed during magnet powering.
 - In spite of the failures, inner layer quench heater significantly contributed to a reduction of the quench load.
- We have a delamination problem on the inner surface of the coils, which is being addressed. Several coils are under production with different insulation and heater lay-out to find a solution.

THANK YOU

Quench heater powering

- For HL-LHC, "Standard" LHC quench heater power supply:
 - Charging voltage: ± 450 V
 - Maximum current through the heaters: 200 A (instead of 80 A)
 - Capacitance: 7.05 mF
 - Improvement of the heater firing unit expected to reduce the heater firing delay from 5 ms to 1 ms.
- For short models, powering parameters adapted to have powering conditions as close as possible to HL-LHC nominal operation.

		Q1/3	Q2a/b	MQXFS1	MQXFS3
OL	P _d , W/cm ²	213	213	209	123
	E _d , J/cm ²	2.16	3.42	3.39	2.59
IL	P _d , W/cm ²	98	98	97	123
	E _d , J/cm ²	1.45	2.32	2.31	2.59

Material properties

Inner layer heater failures

- Failure detected during cold powering test in the quench heater monitoring tool.
- There is not signature of failure on the previous quench to the one where the heater fails.

