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Quench in HTS conductors

Large temperature margin and heat capacity rising with temperature guarantee HTS 

conductor stability: Minimal quench energies in HTS are 2-3 order of magnitude larger than 

those in LTS

Long lengths of HTS conductors with Ie > 500 A/mm2 in 20 T background field are

becoming a reality, thus opening up prospects of next generation high-field magnets

Why would an HTS magnet quench?

 Over-heating: insufficient cooling resulting in a thermal runaway (splices, ac loss, etc.)

 Over-current: current density goes overcritical due too:

o conductor inhomogeneity

o degradation due to stress (delamination, hairline cracks, edge
defects in ReBCO or micro-cracks and leakage in Bi-2212

We need quench detection!
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Normal zone propagation in HTS is slow

H. H. Song and J. Schwartz, "Stability and Quench
Behavior of YBa2Cu3O7-x Coated Conductor at 4.2 K,
Self-Field," IEEE Trans. Appl. Supercond., 19, pp. 3735-
3743, (2009).

J. van Nugteren, “Normal Zone
Propagation in a YBCO Superconducting
Tape” MSc Thesis, Univ. of Twente, 2012

 Quench propagation

velocity is < 50 mm/s at

best circumstances, and

typically much less.

Same factors that cause stability with respect to quenching are impeding quench 

propagation

A consequence of the slow NZPV is that a significant DT yields only a modest resistive voltage that

is hard to detect in a noisy background => conductor damage may occur before a voltage-based

quench detection system is triggered.
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Non-voltage quench detection approaches

 Inductive “quench antennas”: current re-distribution around quench zone via magnetic transient.

Non-invasive, quench localization. NZPV may be too slow for the quench antennas to be effective.

 Current balance measurement between halves of the split conductor – can be very sensitive, at

nanoVolt level. Requires conductor striation, or a specific winding geometry.

 Acoustic emission: transient thermally-induced stress. Non-invasive. May be not efficient in non-

impregnated / non-insulated coils. Non-specific (will also detect cracking, vibrations, etc…).

 FBG optical sensors - detect thermally-induced stress. Sensitive and immune to electromagnetic

noise. Only localized measurement at specified locations (poster 2LP2-02 by S. Chiochiolo et al.)

 Rayleigh-backscattering fiber interrogation technique: thermally-induced stress. Distributed

measurement, precise hotspot localization. Optical fiber has to be co-wound with or embedded into a

conductor. (poster 1EP2-20, by F. Scurti et al.)

 Capacitive: change in stray capacitance of insulation and surrounding cryogenic liquid

(Poster 3LP4 by E. Ravaioli et al.)

DT
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The conductor itself as a temperature sensor?

We do it by monitoring transient acoustic response

Sound velocity: 𝑣 =
𝐸

𝜌
, where Young’s modulus E exhibits the strongest temperature dependence: 

𝐸 𝑇 = 𝐸0 − 𝑠/ 𝑒 ൗ𝑡 𝑇 − 1 (s, t – adjustable parameters) 

The E(T) dependence is weak: just ~10-4-10-5 K-1 at 77 K and even less at lower temperatures.

But it is still measurable using high-frequency (105-106 Hz) vibrational Eigenmodes of the

body, and taking advantage of its high (>100) mechanical Q-factor

This approach has important advantages of being: 

The key temperature-dependent quantity is the Young’s modulus:

 fast, 

 non-invasive 

 adaptable to existing coils and magnet systems.
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1. A body is pulsed by a sender transducer

2. A “ring-down” transient waveform propagates and

reverberates multiple times

3. Transient oscillation is acquired by a receiver transducer; and

stored as “reference” URef (t). Its shape is uniquely defined by

the body geometry, density and elastic modulus E(T)

4. Pulsing and transient acquisitions are repeated periodically; every

new transient Ux(t) is compared to URef(t) using cross-correlation:

A(Dt) = Ux(t+Dt) * URef(t). The time shift Dt yielding the maximal

cross-correlation: is calculated for every new pulse

5. When a hot spot develops, E(T) decreases locally, delaying the

wave passing through it. This proportionally increases Dt.

6

Operational principle

URef(t)

Ux(t)

U*
x(t)

delay

c
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~1.27 mJ heat

release

~0.6 K estimated

spot temperature

12 cm

“Acoustic thermometry for detecting quenches

in superconducting coils and conductor

stacks,“ M. Marchevsky and S. A. Gourlay,

Appl. Phys. Lett. 110, 2017

doi:10.1063/1.4973466

 For a short conductor in quasi-adiabatic conditions

the technique works really well… but what about:

 Longer lengths (> 1 m)?

- Acoustic damping is high at longer distances

- Relative hot spot volume is small

 Varying thermal background?

- Local DT can be <1 K at nucleate boiling

conditions, while background the

temperature may fluctuate

 Can we do localization as well as detection?

Past results and new challenges
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Transient propagation in HTS tape
- 30 (Cu)-50 (SS)-20 (Cu) mm tape cross-section

- 0.2 ms rectangular pulse voltage is applied to the transmitter

piezo-transducer

Directional (X-axis) deformation

4 mm

The in-plane wave modes interact less with a supporting structure

and do not couple to the cryogen bath due to absence of shear

vibrations in liquids.

 In-plane shear waves and out-of-plane waves are excited

Beneficial for the detection!
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Quench detection (adiabatic) in a ReBCO tape 
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However, once the heat insulation piece
was removed from the tape, acoustic time
shift was no longer observed…• Noise level of ~ 1 ns corresponds to the tape voltage of ~ 1.6 mV

(or ~ 13.3 mV/cm, or ~ 25 mW of power dissipation)
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How to improve detection sensitivity ?

 Improve signal to noise ratio:

 Compensate for the ambient 

temperature variations

Cryogenic broadband 

preamplifiers (4.2 – 300 K), 1 MHz bandwidth

Differential measurement technique

By analogy to the voltage differential measurement, one could install two sensors (“A “and “B”)

at the opposite ends of the tape, and detect variation of (DtB - DtA) rather than the absolute Dt.

 This eliminates noise due to ambient thermal drifts

 The sign of (DtB - DtA) will point to the segment (adjacent to “A” or “B”) where the hot spot is

developing
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Setup for the differential acoustic detection 
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Differential acoustic quench detection: results

DT~1.6 K

Dtrel ~ 3.5 ns

DUmax ~ 7.6 mV (68 mV/cm)

Magnet in “A” Magnet in “B”

Ic=54 A Ic=57 A
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Thermal contribution to the acoustic time shift is clearly

distinguishable above the noise background for DT > 0.7 K

• Spot heater was fired at 4.0, 4.6, 4.8, 5 and

6 V; for 5-8 s, until temperature and

acoustic signal equilibrated

• No current in the tape and magnet removed 

Sensitivity calibration using spot heater
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Canted-cosq sub-scale coil using CORC conductor
• CORC-based HTS dipole sub-scales are built by

LBNL in the framework of US Magnet

Development Program, and in collaboration with

Advanced Conductor Technologies. Recent

progress: talk 3L02-04 by J. Weiss et al.

• CORC® conductor : 

Sender transducers Receiver transducer

29 REBCO tapes distributed around a 2.56 mm diameter copper core wire. 

- Tapes are 2 mm wide, and have 30 mm-thick substrate. 

- Cable diameter is 3.63 mm, length is 2.25 m, including out-of-mandrel portions
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CORC cable

Piezo-”washers”

Angled transducers and transients in the CORC

Acoustic pulse is injected from the

surface, then propagates linearly

along the cable length.

• Transient waveform is unstable

after multiple reflections. May

be a result of intermittent

mechanical interaction between

individual tapes.

• The stable fraction is likely

passing through the copper

core
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Quench detection in the CORC coil

The acoustic time shift signal rises

above background noise level at

I=537 A which corresponds to the

coil voltage of 0.3 mV and power

dissipation of 0.16 W in the cable.

We are looking to improve

mechanical coupling between

transducers and the central core of

the cable to rely on its transverse

travelling wave mode.
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 We developed a novel technique for detecting hot spots based on acoustic

transient response

 Technique is non-invasive, it uses conductor itself as distributed thermometer

 It is applicable to cryo-stable conductors; sensitivity is significantly enhanced

for impregnated / quasi-adiabatic conditions

 Better than 1 K thermal resolution for local hot spots in a 1.2 m long bare HTS

tape and a coil of 2.25 m-long CORC has been demonstrated

Conclusions and future plans

Further testing of the technique with ReBCO CORC and also Bi-2212

subscale coils (talk 4L02-04 by T. Shen at al.) is presently underway.


