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Quench detection in HTS

• Slow normal zone propagation formation of hot spots

• Difficult to detect hot spots before material degradation

• Inductive noise (especially in nuclear fusion reactors and AC 

applications)

Rayleigh scattering Interrogated Optical Fibers (RIOF) a 

candidate solution:

• Can be integrated into coils in many ways

• Strong and flexible

• Capable of high spatial resolution

• Immune to electromagnetic noise

• Continuous distributed sensing of temperature and strain
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Why Rayleigh scattering?

• Fiber Bragg gratings (FBGs) point measurements, need 

gratings, fixed locations once fiber is manufactured

• Brillouin scattering         insufficient spatial and temporal 

resolution

• Rayleigh scattering         truly continuous, distributed sensor

– Caused by random fluctuations of the index of refraction along the fiber 

length; like an infinite number of intrinsic FBGs on an ordinary optical 

fiber

– Spatial resolution is physically limited by wavelength of light and 

length-scale of defects

– Temporal resolution is limited by volume of data
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Coils with co-wound fiber

Optical fibers co-wound with 
conductor

• Fiber placed atop or next to 
conductor edge as turn-to-turn 
insulation

• Instrumented with voltage taps, 
thermocouples, embedded heater

• Coils painted with GE varnish – no 
impregnation

• Quench measurements at self-field, 
in nitrogen liquid and vapor
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Coils with co-wound fiber

Optical fibers co-wound with 
conductor

• Fiber placed next to conductor edge 
and attached to kapton insulation

• Instrumented with voltage taps and 
embedded heater

• Coils impregnated in epoxy

• Quench measurements at self-field, 
different temperatures
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“Smart” REBCO conductor

Another way to integrate an optical fiber into a magnet is to have 

a conductor that already contains it.
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Co-wound fiber approach
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heater energy increases

Spectral Shift always anticipates voltage, in any condition and in 

different coil geometry and fiber integration.

Detection delay of voltage vs 

spectral shiftCoil with fiber atop



4.2 K pancake coil quench

4 mm wide YBCO, 65 mm coil inner diameter, 25 turns

650 A, self-field
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Spectral Shift during ramping
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Pancake: 4 mm wide YBCO, 65 mm coil inner diameter, 25 turns

Self-field

Rough periodicity equal to the turn length

Turn length



Spectral Shift during ramping

Spectral Shift at five positions as a function of time
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• Constant if current is constant 

• Jumps back to zero if current is zero

• Quadratic for linear current ramp

Strain due to Lorentz 

force in self-field

𝜀 ∝ 𝐽2



4.2 K pancake coil signals comparison 
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Note the dramatic difference in signal to noise ratio between 

voltage (noise only) and spectral shift



Smart REBCO – straight sample

• 30 cm straight sample

• Heater epoxyed at center
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Spectral shift clearly shows that the instability was initiated 
by a low Ic region and then enhanced by the heat pulse.

Confirmed by multi-section Ic measurement

• 81 K, nitrogen vapor

• Transport of 100 A



Smart REBCO – pancake coil
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No propagation due to strong cooling yet strong spectral shift 
signals at .

• 77 K, liquid nitrogen

• Transport of 235 A (80%Ic)

• Coil painted with GE Varnish

• Self-field



Smart REBCO – pancake coil

• Coil painted with GE-varnish

• self- field, 14.6 K

• Transport current of 500 A
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Sections 32 (heater) and 31 
corresponds to positions 
0.28 and 0.6 m on the 

smart conductor



Smart REBCO – pancake coil

• Coil painted with GE-varnish

• self- field, 14.6 K

• Transport current of 500 A
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Sections 32 (heater) and 31 
corresponds to positions 
0.28 and 0.6 m on the 

smart conductor



Smart REBCO – pancake coil
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• Coil painted with GE-varnish
• self- field, 14.6 K
• Transport current of 500 A

Spectral shift reacts 
immediately, even at 

14.6 K

Voltage onset ~500 ms
after spectral shift

Very strong spectral shift signal!



Smart REBCO - NZPV

• Pancake coil with SMART REBCO

• Spectral Shift threshold of 5 GHz to define normal zone
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Determination of instantaneous normal zone propagation velocity



Conclusions

• Coils with co-wound fibers showed that RIOF is better than 

voltage at any temperature, down to 4.2 K

– Spectral shift always anticipates voltage

– It locates the normal zone with mm spatial resolution 

– Very low signal to noise ratio when voltage is noise only

• Smart REBCO concept has been demonstrated in collaboration 

with AMSC

– Unprecedented fiber-conductor coupling, sensitivity and practicality

– Unprecedented determination of normal zone size and velocity as a 

function of time

• Strain sensing capabilities demonstrated even with co-wound 

fiber approach
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