

13<sup>th</sup> European Conference on Applied Superconductivity

**EUCAS 2017** 

3L03-08: Geneva, 17 - 21 September, 2017

# Outline of this presentation:

# UNIVERSITY OF TWENTE.



2. Introduction

- 3. Inter-strand resistance of impregnated Roebel cable
- 4. AC losses of impregnated Roebel cable
- 5. Conclusions



# 1. Motivation



**LHC 8.3T** 



# EuCARD-2 ≥ 20T



# HL-LHC 11T

# FCC-EuroCirCol 16T



# 1. Motivation

# EuCARD-2 ≥ 20T ReBCO Roebel Source: KIT

# Transverse pressure tolerance?



# Impregnation $\Rightarrow \sigma_{\text{trans}} > 400\text{MPa}$ !

Source: **P. Gao, M. Dhallé et.al.** "The effect of tape layout and impregnation method on transverse pressure dependence of critical current in REBCO Roebel cables", to be published



# 1. Motivation

# Inter-strand resistance?





# **Outline**

### UNIVERSITY OF TWENTE.

1. Motivation

2. Introduction

- 3. Inter-strand resistance of impregnated Roebel cable
- 4. AC losses of impregnated Roebel cable
- 5. Conclusions



# 2. Introduction: samples



CABLE I(KIT), impregnated with CTD101G, filled with alumina powder, 5MPa (CERN)





| Symbol         | Value   | Description           |
|----------------|---------|-----------------------|
| $N_{S}$        | 15      | Number of strands     |
| $d_s$          | 0.1 mm  | Strand thickness      |
| $d_c$          | 0.8 mm  | Cable total thickness |
| $d_i$          | 0.1 mm  | Insulation thickness  |
| $W_r$          | 5.5 mm  | Strand width          |
| $W_t$          | 12.0 mm | Cable width           |
| $W_{x}$        | 5.5 mm  | Cross over width      |
| $W_c$          | 1.0 mm  | Channel width         |
| Φ              | 30°     | Cross over angle      |
| $L_{to}$       | 226 mm  | Transposition pitch   |
| r <sub>i</sub> | 6.0 mm  | Inner radius          |
| $r_{o}$        | 6.0 mm  | Outer radius          |

# Outline of this presentation:

UNIVERSITY OF TWENTE.

- 1. Motivation
  - 2. Introduction

- 3. Inter-strand resistance of impregnated Roebel cable
- 4. AC losses of impregnated Roebel cable
- 5. Conclusions



# 3. R<sub>c</sub> of impregnated Roebel cable

# **Schematic of strands layout** Source: C. Barth

Circuit diagram (15str.)



- 2 neighbors per stand
- 15 soldered contact taps
- $V_1 \sim V_{15}$ : equipotential (S.C. layer)
- R<sub>i/i</sub>: contact resistance between neighboring stands i & j

# 3. R<sub>c</sub> of impregnated Roebel cable



### **Method:**

- 2 taps as current lead (e.g. 1 and 8)
- V<sub>15</sub> is grounded, as a ref. volt. potential
- U<sub>i/15</sub> are measured (e.g. purple data)
- cycle current lead position

R<sub>i/i</sub> can then be calculated by solving system of equations



# 3. R<sub>c</sub> of impregnated Roebel cables







### Avg. R<sub>c</sub> between neighbors

| T                    | # 1              | # 2              | # 3              |  |
|----------------------|------------------|------------------|------------------|--|
| 1                    | $R_c(\mu\Omega)$ | $R_c(\mu\Omega)$ | $R_c(\mu\Omega)$ |  |
| 77K                  | 15.9             | 2.9              | 9.9              |  |
| 77K polished         | 18.0             | -                | -                |  |
| 4.2K                 | 9.1              | 1.4              | 4.6              |  |
| $R_c(77K)/R_c(4.2K)$ | 1.8 ~ 2.0        | 2.1              | 2.2              |  |



# 3. R<sub>c</sub> of impregnated Roebel cable



| Current path: ReBCO → | Ag→  | Cu(b)→    | Cu(c) —        | -Cu(d) | Cu-Cu(e)→ | $Cu(f) \longrightarrow Ag -$ | → ReBCO |
|-----------------------|------|-----------|----------------|--------|-----------|------------------------------|---------|
|                       | - ·9 | 0 01 (10) | <b>-</b> ( - ) | 31(31) |           | 3.(.)                        |         |

| T    | $R_{c, S.C./Ag} (\mu\Omega)$ | $R_{c,S.C./Ag/Cu(b)}(\mu\Omega)$ | $R_{c,Cu(c)}(\mu\Omega)$ | $R_{c,Cu(d)+Cu-Cu(e)}(\mu\Omega)$ | $R_{c,Cu(c)}(\mu\Omega)$ | $R_{c,Cu(c)/Ag/S.C.}(\mu\Omega)$ |
|------|------------------------------|----------------------------------|--------------------------|-----------------------------------|--------------------------|----------------------------------|
| 77K  | 0.31~0.44                    | 0.11~0.15                        | 8.5E-2                   |                                   | 6.5E-5                   | 2.3E-3~4.7E-3                    |
| 4.2K | 1.6E-3~1.6E-2                | 4.4E-3~4.4E-2                    | 3.6E-2                   |                                   | 2.8E-5                   | 9.3E-5~9.3E-4                    |

Ref.: **C. Zhou,** "Intra wire resistance and strain affecting the transport properties of Nb<sub>3</sub>Sn strands in Cable-in-Conduit Conductors", PhD dissertation, University of Twente, 2014

T. Holúbek, M. Dhallé and P. Kováč, "Current transfer in MgB<sub>2</sub> wires with different sheath materials", University of Twente, SUST, 20, 2007

### **Assuming**

 $R_{\Box,Cu/Cu}$  (77K) ~ 10 to 20 nΩ·m<sup>2</sup>  $R_{\Box,Cu/Cu}$  (4.2K) ~ 0.5 to 10 nΩ·m<sup>2</sup>



# Outline of this presentation:

UNIVERSITY OF TWENTE.

- 1. Motivation
  - 2. Introduction

- 3. Inter-strand resistance of impregnated Roebel cable
- 4. AC losses of impregnated Roebel cable
- 5. Conclusions



# 4. AC losses : Instrumentation



# 4. AC losses @ B\_L, 4.2K

### **Amplitude dependence**



### Frequency dependence



- AC losses are dominated by hysteresis
- No coupling losses are observed in exp. window
- Tested :  $B_{p\perp} \approx 1T$ ; Modelling:  $B_{p\perp} = 0.769T$

Both in model prediction & experiment

Carr's Q<sub>h</sub> model, ref.: W. J. Carr. Jr. "AC Loss and Macroscopic Theory of Superconductors", CRC Press, 5 Jul 2001, USA

# 4. AC losses @ B//, 4.2K

### **Amplitude dependence**



### Frequency dependence



### **CABLE II**

- AC losses are dominated by hysteresis
- No coupling losses are observed in exp. window
- Tested:  $B_{p//} \approx 0.03T$ ; Modelling  $B_{p//} = 0.06T$
- $Q_c$  is much lower than measured  $Q_h$  in exp. window, which is identical with modelling estimation

# 3. AC losses @B<sub>a</sub>= $\pm 0.02T(\theta)$ , f=1Hz, 4.2K

### CABLE I: AC losses-B<sub>a</sub> angle θ



- The predominant role of AC losses:
   from Coupling to Hysteresis with the increase θ(0°~90°)
- $Q_h$  model fits well with data when use  $\mu_0 H_p / \approx 1.7T$

Tested  $\mu_0 H_{p\perp} \approx$  1.7T, ref. : **J. Pelegrin, I. Falorio, E. A. Young, Y. Yang et.al.** <u>University of Southampton.</u>

### CABLE II: AC losses-B<sub>a</sub> angle θ



- AC losses are dominated by hysteresis
- Q<sub>h</sub> model doesn't fit well with exp. data, but the observed & predicted trends do correspond



# 4. AC loss @B1, 4.2K

### **Amplitude dependence**



### Frequency dependence



- Coupling losses are observed in the exp. window 5 mT  $\leq \mu_0 H_0 \leq$  50 mT
- Hysteresis losses are observed in the exp. window 80 mT  $\leq \mu_0 H_0 \leq 0.4T$
- Modelling: B<sub>p↑</sub>≈ 0.11T





# Outline of this presentation:

UNIVERSITY OF TWENTE.

- 1. Motivation
  - 2. Introduction

- 3. Inter-strand resistance of impregnated Roebel cable
- 4. AC losses of impregnated Roebel cable
- 5. Conclusions



# 5. Summary

- $R_c$  of Roebel cables( $L_{tp}$ =226mm) at 4.2 K is around 1.5 10  $\mu\Omega$ , at 77 K is about 3 20  $\mu\Omega$ , with about 30% variation within a cable and up to a factor 6 variation from cable-to-cable
- Coupling losses can be predicted by using the measured  $R_c$  values
- The inter-strand resistance is dominated by the contact resistance of the Cu-Cu interface
- AC losses are dominated by **hysteresis** @ B1, at 4.2 K,  $B_{p\perp} \approx 1 \text{ T} \sim 1.7 \text{ T}$
- Coupling losses might be observed @ B// and B↑, at 4.2 K, depending on impregnation details;  $B_{p//} \approx 0.03 \text{ T}$
- AC losses @ inclined field mostly ( $\theta \ge \sim 15^\circ$ ) dominated by the perpendicular field component
- Analytical models show same trends as measured data, a better fit probably requires numerical modelling



### UNIVERSITY OF TWENTE.





# Thanks for your attention

