AC Loss and inter-strand resistance in Impregnated ReBCO Roebel cables

P. Gao, M. Dhalle, H. Norder, B. van Nugteren, K. Yagotintsev, S. Wessel, A. Nijhuis
University of Twente, Faculty of Science & Technology, 7522 NB Enschede, The Netherlands

A. Kario, S. Otten, W. Goldacker
KIT, ITEP, Karlsruhe, Germany

L. Bottura, J. van Nugteren, G. Kirby, S. Tavares, S. Clement, L. Rossi and H. H.J. ten Kate
CERN, Geneva, Switzerland
Outline of this presentation:

1. Motivation
2. Introduction
3. Inter-strand resistance of impregnated Roebel cable
4. AC losses of impregnated Roebel cable
5. Conclusions
1. Motivation

LHC 8.3T
- Source: CERN

HL-LHC 11T
- Source: CERN
- Nb_Sn

FCC-EuroCirCol 16T
- Source: Fermilab

EuCARD-2 ≥ 20T
- Source: CERN
- ReBCO Roebel

Source: KIT
1. Motivation

EuCARD-2 ≥ 20 T

Transverse pressure tolerance?

![Graph showing critical current versus transverse pressure](image)

**Impregnation ⇒ \(\sigma_{\text{trans}} > 400 \text{MPa} \) !

1. Motivation

Inter-strand resistance?

EuCARD-2 ≥ 20T

Current redistribution

Field Quality

Stability

AC loss

Source: KIT

ReBCO Roebel
Outline

1. Motivation
2. Introduction
3. Inter-strand resistance of impregnated Roebel cable
4. AC losses of impregnated Roebel cable
5. Conclusions
2. Introduction: samples

CABLE I (KIT), impregnated with CTD101G, filled with alumina powder, 5MPa (CERN)

CABLE II (KIT), impregnated with CTD101K 5MPa (CERN)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_S</td>
<td>15</td>
<td>Number of strands</td>
</tr>
<tr>
<td>d_s</td>
<td>0.1 mm</td>
<td>Strand thickness</td>
</tr>
<tr>
<td>d_c</td>
<td>0.8 mm</td>
<td>Cable total thickness</td>
</tr>
<tr>
<td>d_i</td>
<td>0.1 mm</td>
<td>Insulation thickness</td>
</tr>
<tr>
<td>W_s</td>
<td>5.5 mm</td>
<td>Strand width</td>
</tr>
<tr>
<td>W_t</td>
<td>12.0 mm</td>
<td>Cable width</td>
</tr>
<tr>
<td>W_x</td>
<td>5.5 mm</td>
<td>Cross over width</td>
</tr>
<tr>
<td>W_c</td>
<td>1.0 mm</td>
<td>Channel width</td>
</tr>
<tr>
<td>ϕ</td>
<td>30°</td>
<td>Cross over angle</td>
</tr>
<tr>
<td>L_{10}</td>
<td>226 mm</td>
<td>Transposition pitch</td>
</tr>
<tr>
<td>r_i</td>
<td>6.0 mm</td>
<td>Inner radius</td>
</tr>
<tr>
<td>r_o</td>
<td>6.0 mm</td>
<td>Outer radius</td>
</tr>
</tbody>
</table>
Outline of this presentation:

1. Motivation
2. Introduction
3. Inter-strand resistance of impregnated Roebel cable
4. AC losses of impregnated Roebel cable
5. Conclusions

EUCAS 2017 – P. Gao– 3LO3-08: Geneva, Switzerland- September 2017
3. R_c of impregnated Roebel cable

- 2 neighbors per stand
- 15 soldered contact taps
- $V_1 \sim V_{15}$: equipotential (S.C. layer)
- R_{ij}: contact resistance between neighboring stands i & j
3. R_c of impregnated Roebel cable

Method:
- 2 taps as current lead (e.g. 1 and 8)
- V_{15} is grounded, as a ref. volt. potential
- $U_{i/15}$ are measured (e.g. purple data)
- cycle current lead position

R_{ij} can then be calculated by solving system of equations.
3. R_c of impregnated Roebel cables

<table>
<thead>
<tr>
<th>T</th>
<th># 1 R_c ($\mu\Omega$)</th>
<th># 2 R_c ($\mu\Omega$)</th>
<th># 3 R_c ($\mu\Omega$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>77K</td>
<td>15.9</td>
<td>2.9</td>
<td>9.9</td>
</tr>
<tr>
<td>77K polished</td>
<td>18.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.2K</td>
<td>9.1</td>
<td>1.4</td>
<td>4.6</td>
</tr>
<tr>
<td>$R_c(77K)/R_c(4.2K)$</td>
<td>1.8 ~ 2.0</td>
<td>2.1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Avg. R_c between neighbors
3. R_c of impregnated Roebel cable

Assuming

$R_{c,Cu/Cu} (77K) \sim 10$ to 20 nΩ·m²
$R_{c,Cu/Cu} (4.2K) \sim 0.5$ to 10 nΩ·m²

<table>
<thead>
<tr>
<th>T</th>
<th>$R_{c,S.C./Ag} (\mu\Omega)$</th>
<th>$R_{c,S.C./Ag/Cu(b)} (\mu\Omega)$</th>
<th>$R_{c,Cu(c)} (\mu\Omega)$</th>
<th>$R_{c,Cu(d)+Cu-Cu(e)} (\mu\Omega)$</th>
<th>$R_{c,Cu(c)} (\mu\Omega)$</th>
<th>$R_{c,Cu(c)/Ag/S.C.} (\mu\Omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>77K</td>
<td>0.31~0.44</td>
<td>0.11~0.15</td>
<td>8.5E-2</td>
<td>6.5E-5</td>
<td>2.3E-3~4.7E-3</td>
<td></td>
</tr>
<tr>
<td>4.2K</td>
<td>1.6E-3~1.6E-2</td>
<td>4.4E-3~4.4E-2</td>
<td>3.6E-2</td>
<td>2.8E-5</td>
<td>9.3E-5~9.3E-4</td>
<td></td>
</tr>
</tbody>
</table>

Ref. C. Zhou, “Intra wire resistance and strain affecting the transport properties of Nb₃Sn strands in Cable-in-Conduit Conductors”, PhD dissertation, University of Twente, 2014

T. Holúbek, M. Dhallé and P. Kováč, “Current transfer in MgB₂ wires with different sheath materials”, University of Twente, SUST, 2007

$R = \frac{\rho l}{A}$
$R = \frac{R_{c,Cu/Cu}}{A}$
Outline of this presentation:

1. Motivation
2. Introduction
3. Inter-strand resistance of impregnated Roebel cable
4. AC losses of impregnated Roebel cable
5. Conclusions
4. AC losses : Instrumentation

AC loss measured by gas flow calorimetry and magnetisation methods.

Sample holder

Dipole magnet

± 1.5 T , ≤ 1 Hz, 4.2 K

Solenoidal magnet

± 1.4 T , ≤ 0.09 Hz, 4.2 K
4. AC losses @ $B \perp$, 4.2K

Amplitude dependence

- AC losses are dominated by hysteresis
- No coupling losses are observed in exp. window
- Tested: $B_{\perp} \approx 1T$; Modelling: $B_{\perp} = 0.769T$

Frequency dependence

- Both in model prediction & experiment

Carr’s Q_h model, ref.: **W. J. Carr Jr.** “AC Loss and Macroscopic Theory of Superconductors”, CRC Press, 5 Jul 2001, USA
4. AC losses @ $B_{//}$, 4.2K

Amplitude dependence

- AC losses are dominated by hysteresis
- No coupling losses are observed in exp. window
- Tested: $B_{p//} \approx 0.03T$; Modelling $B_{p//} = 0.06T$
- Q_c is much lower than measured Q_h in exp. window, which is identical with modelling estimation

Frequency dependence

CABLE I
- $0.02T$
- $0.4T$

CABLE II
- $0.02T$
- $0.4T$

CABLE III
- $0.02T$
- $0.4T$
3. AC losses @ $B_a = \pm 0.02T(\theta)$, f=1Hz, 4.2K

CABLE I: AC losses-B_a angle θ

- The predominant role of AC losses: from Coupling to Hysteresis with the increase $\theta(0^\circ \sim 90^\circ)$
- Q_h model fits well with data when use $\mu_0 H_{p,\perp} \approx 1.7T$

CABLE II: AC losses-B_a angle θ

- AC losses are dominated by hysteresis
- Q_h model doesn’t fit well with exp. data, but the observed & predicted trends do correspond

Tested $\mu_0 H_{p,\perp} \approx 1.7T$, ref.: J. Pelegrin, I. Falorio, E. A. Young, Y. Yang et.al. University of Southampton.
4. AC loss @B↑, 4.2K

Amplitude dependence

- Coupling losses are observed in the exp. window $5 \text{ mT} \leq \mu_0 H_0 \leq 50 \text{ mT}$
- Hysteresis losses are observed in the exp. window $80 \text{ mT} \leq \mu_0 H_0 \leq 0.4 \text{ T}$
- Modelling: $B_p \approx 0.11 \text{ T}$

Frequency dependence
Outline of this presentation:

1. Motivation
2. Introduction
3. Inter-strand resistance of impregnated Roebel cable
4. AC losses of impregnated Roebel cable
5. Conclusions
5. Summary

- R_c of Roebel cables ($L_{tp}=226\text{mm}$) at 4.2 K is around $1.5 - 10\ \mu\Omega$, at 77 K is about $3 - 20\ \mu\Omega$, with about 30% variation within a cable and up to a factor 6 variation from cable-to-cable.

- Coupling losses can be predicted by using the measured R_c values.

- The inter-strand resistance is dominated by the contact resistance of the Cu-Cu interface.

- AC losses are dominated by hysteresis @ B_{\perp}, at 4.2 K, $B_{\perp} \approx 1\text{ T} \sim 1.7\text{ T}$.

- Coupling losses might be observed @ B_{\parallel} and B_{\uparrow}, at 4.2 K, depending on impregnation details; $B_{\parallel} \approx 0.03\text{ T}$.

- AC losses @ inclined field mostly ($\theta \geq \sim 15^\circ$) dominated by the perpendicular field component.

- Analytical models show same trends as measured data, a better fit probably requires numerical modelling.
Thanks for your attention