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MgB,
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Fabrication of samples

Ball-milled mixture of

Sample preparation Mg and B powders

Leibniz-Institut fur Festkorper - und
Werkstoffforschung Dresden (IFW Dresden)

= o
g "

> 250 rpm x 10 h

Dr. Wolfgang HaRler Hot pressing was operated

Ms. Juliane Scheiter > under pressure of 480 MPa
temperature 700 C
time 10 min

COMPOSITION AND DIMENSIONS OF MgB, BULK SAMPLES

Sample No. MH1 MH2 MH3 MH4 MH5 MHG6 MH7 MH8
Composition Un-doped  Un-doped Un-doped Un-doped Un-doped SiC 3% SiC 3% SiC 3%
Thickness t (mm) 1.12 1.10 1.13 1.37 1.36 3.30 3.34 6.58

All samples are 20 mm in diameter

< Magnesium powder > < Boron powder > < SiC powder >
Goodfellow, purity 99.8 %, PAVEZYUM, purity 98.5 %, Alfa Aesar, purity 95.0 %,
grain size < 250 um grain size < 250 um grain size <30 nm



Schematic drawing of experimental setup for PFM

Vacuum "1 Magnetizing coil
chamber ||® ’
— Shunt resistor
Thermometer
2-stage Hall sensor I . -
GM ?
refrigerator
'8 Cold stage — | Iron yoke _
Iron yoke Bulk magnet T
&
Liquid nitrogen Pulse generator
Compressor Vacuum pump

* The temperature reached about 14.4-16.6 K
 Thermometer is attached at the cold stage

e A pair of iron yokes are attached close to the both side on the sample



Sample arrangements on the cold stage
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MH8
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GM refrigerator
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GM refrigerator

> Applied field B,

04T-20T * Operating temperature measured at the

> Magnetizing coil cold stage before each PFM shot

112 Turns (Copper winding)
Outside/inside diameter : 114/83



B (T)

B (T)

2.5
2.0
1.5
1.0
0.5
0.0

2.5
2.0
1.5
1.0
0.5
0.0

B,: Maximum applied field calculated by the pulsed °
B,: Penetration field at the highest peak measured
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Trapped field B; and evolutional profiles during PFM
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Flux jumps
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Fast flux flow
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The trapped field reached 0.45 T

* The flux jumps and fast flux flows were

observed in high field application over 1.4 T
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Trapped Fields measured with various sizes in thickness

0.8 : :
=0=3.30 mm Single (SiC-3wt%)
o —8—3.58 mm 3-layered
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E o4 t
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* The thicker the sample, the higher field required for flux invasion start
- Enhanced shielding effect with size in thickness
* The samples showed the same B, values 0.4-0.64 T
- the sample in the critical state with the relevant Jc values
*  Frequent flux jump (O) and fast flux flow = Low specific heat, weak pinning



Applied field dependence of penetration fields and
ratios of trapped field B; / penetration field B,

with various sample thickness

Penetration field B,
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* The field invasion tends to be suppressed with increasing thickness
* B;degrades with thickness = The shielding effect were promoted with thickness
* The ratios tend to descend = The temperature rises enhanced with thickness

0.0 0.5 1.0 1.5 2.0 2.5



Applied field dependence on the arriving time to the
center from 0 to 10% and 90% of penetration field B
as a function of sample thickness

Rise tlime of Bal= 10.3 mls (const)

12 Constant
[
- -

— -

Arriving time (ms)

6 B ! \:’
Eﬂ:ﬂ_“u\ Descending
Ky
3 1 e &
0-10%
O 1 1 1 1

0 0.5 1 1.5 2 2.5
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-0=10 % 5-layered c

1-~10% 3-layered a

10% Single b

{1 —e-90% 5-layeredc

-B-90 % 3-layered a
90 % Single b

Thickness of the layered sample
5-layered : 6.08 mm
3-layered : 3.58 mm

Single (sic-3.0 wt%): 3.30 mm

At the beginning, 0-10 % = The thicker, the longer the arriving time, due to the shielding
effect, beside the flux starts to invade earlier with increasing applied field

Near the peak, 0-90 % - Almost constant arriving times as 8.7 — 9.5 ms, which means the
flux-increasing speed become fast with increasing of applied field

- The flux jumping into the sample is promoted with applied field strength



Applied field dependence of field inclination in the range
from 10 to 90% of penetration fields
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) ] t Total thickness of the samples
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* Flux increasing speed tends to rise with increasing B, , which
rise with thickness
* Rapid invasion in low fields leads to high field capture of By,
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Temperature dependence of flux invasion and trapped fields
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Conclusion

* The trapped field B; reached 0.64 T in the narrow region of around 1 T in B,
with the least heat generation

* The "fast flux flow" and flux jumping occur in the region over 1.2 T, which
caused significant drops in B,

* The flux invasion behavior strongly depends on the sample thickness, which
mean that the flux invasion from the side surface of the samples

* The temperature rise caused by the flux motion due to the low specific heat
should be responsible for low field-capturing



Field Invasion Profiles (s-layered sample)
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Large temperature rise causes the flux jump and flow
—> lower the B; values mm
- narrow the optimum area of B, =
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Field Invasion Profiles (s-layered sample)
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3 and 5 layered samples
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