

The successful incorporation of Ag into YBa₂Cu₃O₇ bulk superconductors

J. V. J. Congreve, Y. H. Shi, A. R. Dennis, J. H. Durrell and D. A. Cardwell

EUCAS, September 17-21, 2017

- Motivation
- Growth of YBCO-Ag
- Growth rate
- Microstructure and Composition
- Trapped field
- Conclusions

- Motivation
- Growth of YBCO-Ag
- Growth rate
- Microstructure and Composition
- Trapped field
- Conclusions

Motivation for incorporation of Ag

- Mechanical properties limit achievable superconducting properties
- Ag improves the fracture toughness and bending strength without negatively affecting superconducting properties
- YBCO, GdBCO-Ag and SmBCO-Ag successfully batch processed
- Reduction in peritectic temperature affects initial decomposition,
 diffusion, interface kinetics & growth rate

- Motivation
- Growth of YBCO-Ag
- Growth rate
- Microstructure and Composition
- Trapped field
- Conclusions

Growth

 9 samples successfully partially grown by liquid-phase enriched TSMG

Growth of YBCO-Ag by CCIH

Continuous cooling and isothermal hold (CCIH) technique

- Motivation
- Growth of YBCO-Ag
- Growth rate
- Microstructure and Composition
- Trapped field
- Conclusions

Growth Rate of YBCO-Ag

Isothermal holding:

$$G = \alpha(\Delta T)^{\beta}$$

(Endo, Chauhan et al. 1996, Zhai, Shi et al. 2014, Shi, Babu et al. 2007)

Some growth in continuously cooled region:

$$G = \frac{dL}{dt}$$

Growth Length

•
$$L = \int_{t_{start}}^{t_{end\ of\ continuous\ cool}} G_{continuous\ cool}\ dt + G_{isothermal\ hold}\ t_{isothermal\ hold}$$

•
$$L = \int_{t_{start}}^{t_{end\ of\ continuous\ cool}} \alpha(-0.5t)^{\beta}\ dt + \alpha(\Delta T)^{\beta}\ t_{isothermal\ hold}$$

Samples

ΔΤ	t _i (hours)	Top of sample	Cross section of sample
0	10		
3	10		
8	10		
10	10	(8)	
12	8		

ΔΤ	t _i (hours)	Top of sample	Cross section of sample
14	6	(9)	
16	3		pi de la companya de
16	2	0	
18	0.75		

Growth Rate Model

Use of CCIH

- Silver deficient region
- Offset in growth rate model

$$G_{a/b} = 1.4 \times 10^{-3} (\Delta T)^{1.76} + 0.035$$

 $G_c = 4.5 \times 10^{-3} (\Delta T)^{1.42} + 0.035$

Derivation of a heating profile

- Motivation
- Growth of YBCO-Ag
- Growth rate
- Microstructure and Composition
- Trapped field
- Conclusions

Microstructure in c-axis direction

Composition in c-axis direction

- Motivation
- Growth of YBCO-Ag
- Growth rate
- Microstructure and Composition
- Trapped field
- Conclusions

Trapped field

- Motivation
- Growth of YBCO-Ag
- Growth rate
- Microstructure and Composition
- Trapped field
- Conclusions

Conclusions

- Growth rate of YBCO-Ag has been studied in detail using the new CCIH technique
- A model for the growth rate of YBCO-Ag in both the a/b- and caxis direction has been developed
- This growth rate model has enabled a heating profile to be developed to successfully grow single grains upto 30 mm in diameter
- We are now able to grow large single grains of YBCO-Ag which exhibit uniform trapped fields

