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Outline

• Pulsed field magnetisation (PFM)

• Modelling trapped field capability

• Simulating field-cooling (FC) & zero-field-cooling (ZFC) magnetisation

• Modelling PFM & multi-pulse PFM

• Electromagnetic & thermal considerations

• Simulating multiple magnetic field pulses

• Main results & conclusions
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Pulsed Field Magnetisation

• PFM technique: compact, mobile, relatively inexpensive

• Issues: Btrap [PFM] < Btrap [FC], [ZFC]

• Temperature rise ΔT due to rapid movement of magnetic flux

• Record PFM trapped field: 5.2 T @ 29 K

Top surface of 45 mm diameter Gd-Ba-Cu-O

Fujishiro et al. Physica C 2006

• Record trapped field by FC: 17.6 T @ 26 K

Centre of 2 x 25 mm diameter Gd-Ba-Cu-O

Durrell et al. Supercond. Sci. Technol. 2014
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Pulsed Field Magnetisation

• Many considerations for PFM:

• Pulse magnitude, pulse duration, temperature(s), number of pulses,
type of magnetising coil(s), use of ferromagnetic materials

• Dynamics of magnetic flux during PFM process
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Pulsed Field Magnetisation

• Many considerations for PFM:

• Pulse magnitude, pulse duration, temperature(s), number of pulses,
type of magnetising coil(s), use of ferromagnetic materials

• Dynamics of magnetic flux during PFM process

• Multi-pulse PFM: effective in increasing trapped field/flux
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Fujishiro et al. Physica C 2006 Zhou et al. Appl. Phys. Lett. 2017



Modelling Trapped Field Capability
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Model #1

• Stationary

• Comsol Multiphysics 5.2a

• 2D axisymmetric

• AC/DC module

• Magnetic Field (mf) interface

• External Current Density node

• No flux creep

• Time taken: ~ 2-3 seconds

Model #2

• Time-dependent

• Comsol Multiphysics 5.2a

• 2D axisymmetric

• AC/DC module

• Magnetic Field Formulation (mfh) interface

• E-J power law, E α Jn (flux creep)

• Apply + remove background field

• Time taken: ~ 1-2 hours  



Modelling Trapped Field Capability
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Jc(B, T) characteristics

• Measured from a small specimen 

taken from representative sample:

GdBa2Cu3O7 (15wt% Ag)

• Input into model using direct 

interpolation of experimental data, 

i.e., look-up table

• Can dramatically speed up model

• Can also use fitting equation for 

fishtail effect in (RE)BCO 

materials:



Modelling Trapped Field Capability
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Results

Magnetisation Time Trapped Field

77 K

FC --- 1.544 T

ZFC [5 T]
t = 0 min 1.546 T

t = 10 min 1.263 T
t = 20 min 1.223 T

65 K

FC --- 3.826 T

ZFC [10 T]
t = 0 min 3.827 T

t = 10 min 3.256 T
t = 20 min 3.158 T

50 K

FC --- 7.449 T

ZFC [20 T]
t = 0 min 7.422 T

t = 10 min 6.577 T
t = 20 min 6.405 T

79%

82.5%

86%



PFM Modelling Framework
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Electromagnetic properties modelled as Model #2 (ZFC); 

magnetising fixture assumed as solenoid coil:

Thermal behaviour needs to be modelled during PFM; 

governing equations:

ρ = mass density (bulk 5900 kg/m3, indium 7310 kg/m3)

C = specific heat (measured, temperature-dependent)

κ = thermal conductivity:

κab = 20 W/(m·K), κc = 4 W/(m·K), κindium = 0.5 W/(m·K)

Heat source,

coupling with EM model + Jc(B, T)

τ = 15 ms



PFM Single Pulse Results
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• t = 120 s  flux creep relaxation & 

cooling back to operating temp.

• Percentage of ZFC(t = 20 min):

• 77 K 85%

• 65 K 49%

• 50 K 29%

• Four specific cases as initial 

conditions for 2nd pulse:

• Partially-magnetised (PM), so-

called ‘M-shaped’ profile

• Under-magnetised (UM)

• Fully-magnetised (FM)

• Over-magnetised (OM)



PFM 2nd Pulse Results
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For all T, trapped field after 2nd pulse exhibits 

two particular characteristics:

1) Increased trapped field, Bt, when the bulk 

is fully magnetised; maximum value when 

the 1st pulse results in full magnetisation

2) Increased activation field: applied field, 

Bapp, required to fully magnetise the sample 

77 K

65 K

50 K



PFM 2nd Pulse: Magnetic Flux Penetration
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• Why does this occur?

• More difficult for magnetic flux to 

penetrate the sample due to 

existing trapped field

• Existing, induced supercurrent 

flows in opposite direction



PFM 2nd Pulse: Thermal Behaviour
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• Why does this occur?

• Reduced dynamic movement of flux = lower temperature rise for equivalent 

next pulse

• Can examine the average temperature, Tave, during & after PFM:



PFM 3rd Pulse Results
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Similar results are found for the 3rd pulse; 

however, increase in Bt is marginal, 

suggesting saturation has been reached

77 K

65 K

50 K



PFM: Towards Multi-Pulse, Multi-Temperature
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• At t = +120 s, temperature is lowered to 

next temperature (–0.5 K/s)

• Fully magnetised (FM) cases as initial 

conditions

• Maximum trapped field, Bt,max, slightly 

less than for multiple pulses at constant T

• More investigations & optimisation 

needed!

77 K  65 K  50 K



Summary

• A 2D axisymmetric finite element method based on the H-formulation was extended 

to investigate multi-pulse PFM

• An increase in the trapped field, Bt, can be achieved after a 2nd pulse:

• This is maximised when the 1st pulse results in full magnetisation; and

• An increased applied field is necessary for the 2nd pulse

• This occurs because:

• It is more difficult for the magnetic flux to penetrate the already-magnetised sample

• There is a lower temperature rise from the reduced dynamic movement of flux

• A 3rd pulse results in a marginal increase in Bt

• Preliminary multi-pulse, multi-temperature investigation showed similar, but 

slightly lower, Bt
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