

Towards optimisation of multi-pulse, multi-temperature pulsed field magnetisation of bulk high-temperature superconductors

Dr Mark Ainslie¹

J. Srpcic¹, D. Zhou¹, H. Fujishiro², K. Takahashi², D. A. Cardwell¹, J. H. Durrell¹

¹Bulk Superconductivity Group, Department of Engineering, University of Cambridge ²Department of Physical Science and Materials Engineering, Iwate University

Outline

- Pulsed field magnetisation (PFM)
- Modelling trapped field capability
 - Simulating field-cooling (FC) & zero-field-cooling (ZFC) magnetisation
- Modelling PFM & multi-pulse PFM
 - Electromagnetic & thermal considerations
 - Simulating multiple magnetic field pulses
- Main results & conclusions

Pulsed Field Magnetisation

- PFM technique: compact, mobile, relatively inexpensive
- Issues: B_{trap} [PFM] < B_{trap} [FC], [ZFC]
 - Temperature rise ΔT due to rapid movement of magnetic flux
- Record PFM trapped field: 5.2 T @ 29 K
 Top surface of 45 mm diameter Gd-Ba-Cu-O
 Fujishiro et al. Physica C 2006
 - Record trapped field by FC: 17.6 T @ 26 K
 Centre of 2 x 25 mm diameter Gd-Ba-Cu-O
 Durrell et al. Supercond. Sci. Technol. 2014

Pulsed Field Magnetisation

- Many considerations for PFM:
 - Pulse magnitude, pulse duration, temperature(s), number of pulses, type of magnetising coil(s), use of ferromagnetic materials
 - Dynamics of magnetic flux during PFM process

Pulsed Field Magnetisation

- Many considerations for PFM:
 - Pulse magnitude, pulse duration, <u>temperature(s)</u>, <u>number of pulses</u>, type of magnetising coil(s), use of ferromagnetic materials
 - Dynamics of magnetic flux during PFM process
- Multi-pulse PFM: effective in increasing trapped field/flux

Fujishiro et al. Physica C 2006

Zhou et al. Appl. Phys. Lett. 2017

Modelling Trapped Field Capability

Model #1

- Stationary
- Comsol Multiphysics 5.2a
 - 2D axisymmetric
 - AC/DC module
 - Magnetic Field (mf) interface
 - External Current Density node
- No flux creep
- Time taken: ~ 2-3 seconds

Model #2

- Time-dependent
- Comsol Multiphysics 5.2a
 - 2D axisymmetric
 - AC/DC module
 - Magnetic Field Formulation (mfh) interface
- E-J power law, $E \alpha J^n$ (flux creep)
- Apply + remove background field
- Time taken: ~ 1-2 hours

Modelling Trapped Field Capability

<u>J_c(B, T) characteristics</u>

- Measured from a small specimen taken from representative sample: GdBa₂Cu₃O₇ (15wt% Ag)
- Input into model using direct interpolation of experimental data, i.e., look-up table
- Can dramatically speed up model
- Can also use fitting equation for fishtail effect in (RE)BCO materials:

$$J_{c}(B) = J_{c1} \exp\left(-\frac{B}{B_{L}}\right) + J_{c2} \frac{B}{B_{\text{max}}} \exp\left[\frac{1}{y}\left(1 - \left(\frac{B}{B_{\text{max}}}\right)^{y}\right)\right]$$

Modelling Trapped Field Capability

Results

Magnetisation	Time	Trapped Field	
77 K			
FC		1.544 T	
ZFC [5 T]	t = 0 min	1.546 T	
	t = 10 min	1.263 T	
	t = 20 min	1.223 T	79%
65 K			
FC		3.826 T	
ZFC [10 T]	t = 0 min	3.827 T	
	t = 10 min	3.256 T	
	t = 20 min	3.158 T	82.5%
	50 K		
FC		7.449 T	
ZFC [20 T]	t = 0 min	7.422 T	
	t = 10 min	6.577 T	
	t = 20 min	6.405 T	86%

PFM Modelling Framework

Electromagnetic properties modelled as Model #2 (ZFC); magnetising fixture assumed as solenoid coil:

$$I_{pulse}(t) = N \cdot I_0 \frac{t}{\tau} \exp\left(1 - \frac{t}{\tau}\right)$$
 $\tau = 15 \text{ ms}$

Thermal behaviour needs to be modelled during PFM; governing equations:

$$\rho \cdot C \frac{\mathrm{d}T}{\mathrm{d}t} = \nabla \cdot (k \nabla T) + Q$$

$$Q = E \cdot J$$
 Heat source, coupling with EM model + $J_{c}(B, T)$

 ρ = mass density (bulk 5900 kg/m³, indium 7310 kg/m³)

C = specific heat (measured, temperature-dependent)

 κ = thermal conductivity:

$$\kappa_{ab} = 20 \text{ W/(m·K)}, \ \kappa_{c} = 4 \text{ W/(m·K)}, \ \kappa_{indium} = 0.5 \text{ W/(m·K)}$$

PFM Single Pulse Results

- t = 120 s → flux creep relaxation & cooling back to operating temp.
- Percentage of ZFC(t = 20 min):
 - 77 K 85%
 - 65 K 49%
 - 50 K 29%

- Four specific cases as initial conditions for 2nd pulse:
 - Partially-magnetised (PM), socalled 'M-shaped' profile
 - Under-magnetised (UM)
 - Fully-magnetised (FM)
 - Over-magnetised (OM)

PFM 2nd Pulse Results

For all T, trapped field after 2^{nd} pulse exhibits two particular characteristics:

- 1) Increased trapped field, B_t , when the bulk is fully magnetised; maximum value when the 1st pulse results in full magnetisation 2) Increased activation field: applied field,
- B_{app} , required to fully magnetise the sample

PFM 2nd Pulse: Magnetic Flux Penetration

- Why does this occur?
 - More difficult for magnetic flux to penetrate the sample due to existing trapped field
 - Existing, induced supercurrent flows in opposite direction

PFM 2nd Pulse: Thermal Behaviour

- Why does this occur?
 - Reduced dynamic movement of flux = lower temperature rise for equivalent next pulse
 - Can examine the average temperature, T_{ave} , during & after PFM:

PFM 3rd Pulse Results

Similar results are found for the 3^{rd} pulse; however, increase in B_t is marginal, suggesting saturation has been reached

PFM: Towards Multi-Pulse, Multi-Temperature

$77 \text{ K} \rightarrow 65 \text{ K} \rightarrow 50 \text{ K}$

- At t = +120 s, temperature is lowered to next temperature (-0.5 K/s)
- Fully magnetised (FM) cases as initial conditions
- Maximum trapped field, B_{t,max}, slightly less than for multiple pulses at constant T
- More investigations & optimisation needed!

Summary

- A 2D axisymmetric finite element method based on the H-formulation was extended to investigate multi-pulse PFM
- An increase in the trapped field, B_t , can be achieved after a 2^{nd} pulse:
 - This is maximised when the 1st pulse results in full magnetisation; and
 - An increased applied field is necessary for the 2nd pulse
- This occurs because:
 - It is more difficult for the magnetic flux to penetrate the already-magnetised sample
 - There is a lower temperature rise from the reduced dynamic movement of flux
- A 3rd pulse results in a marginal increase in B_t
- Preliminary multi-pulse, multi-temperature investigation showed similar, but slightly lower, B_t

