Towards optimisation of multi-pulse, multi-temperature pulsed field magnetisation of bulk high-temperature superconductors

Dr Mark Ainslie

1Bulk Superconductivity Group, Department of Engineering, University of Cambridge
2Department of Physical Science and Materials Engineering, Iwate University
Outline

• Pulsed field magnetisation (PFM)
• Modelling trapped field capability
 • Simulating field-cooling (FC) & zero-field-cooling (ZFC) magnetisation
• Modelling PFM & multi-pulse PFM
 • Electromagnetic & thermal considerations
 • Simulating multiple magnetic field pulses
• Main results & conclusions
Pulsed Field Magnetisation

- PFM technique: compact, mobile, relatively inexpensive
- Issues: $B_{\text{trap \ [PFM]}} < B_{\text{trap \ [FC], \ [ZFC]}}$
 - Temperature rise ΔT due to rapid movement of magnetic flux
- Record PFM trapped field: 5.2 T @ 29 K
 - Top surface of 45 mm diameter Gd-Ba-Cu-O
- Record trapped field by FC: 17.6 T @ 26 K
 - Centre of 2 x 25 mm diameter Gd-Ba-Cu-O
Pulsed Field Magnetisation

• Many considerations for PFM:
 • Pulse magnitude, pulse duration, temperature(s), number of pulses, type of magnetising coil(s), use of ferromagnetic materials
 • Dynamics of magnetic flux during PFM process
Pulsed Field Magnetisation

• Many considerations for PFM:
 • Pulse magnitude, pulse duration, temperature(s), number of pulses, type of magnetising coil(s), use of ferromagnetic materials
 • Dynamics of magnetic flux during PFM process
 • Multi-pulse PFM: effective in increasing trapped field/flux

Modelling Trapped Field Capability

Model #1
- Stationary
- Comsol Multiphysics 5.2a
 - 2D axisymmetric
 - AC/DC module
 - Magnetic Field (mf) interface
 - External Current Density node
- No flux creep
- Time taken: ~ 2-3 seconds

Model #2
- Time-dependent
- Comsol Multiphysics 5.2a
 - 2D axisymmetric
 - AC/DC module
 - Magnetic Field Formulation (mfh) interface
 - E-J power law, $E \propto J^n$ (flux creep)
- Apply + remove background field
- Time taken: ~ 1-2 hours
Modelling Trapped Field Capability

$J_c(B, T)$ characteristics

- Measured from a small specimen taken from representative sample: GdBa$_2$Cu$_3$O$_7$ (15wt% Ag)
- Input into model using direct interpolation of experimental data, i.e., look-up table
- Can dramatically speed up model
- Can also use fitting equation for fishtail effect in (RE)BCO materials:

$$J_c(B) = J_{c1} \exp\left(-\frac{B}{B_L}\right) + J_{c2} \frac{B}{B_{\text{max}}} \exp\left[\frac{1}{y} \left(1 - \left(\frac{B}{B_{\text{max}}}\right)^y\right)\right]$$
Modelling Trapped Field Capability

Results

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Magnetisation</th>
<th>Time</th>
<th>Trapped Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>77 K</td>
<td>FC</td>
<td>t = 0 min</td>
<td>1.544 T</td>
</tr>
<tr>
<td></td>
<td>ZFC [5 T]</td>
<td>t = 10 min</td>
<td>1.263 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t = 20 min</td>
<td>1.223 T</td>
</tr>
<tr>
<td>65 K</td>
<td>FC</td>
<td>t = 0 min</td>
<td>3.826 T</td>
</tr>
<tr>
<td></td>
<td>ZFC [10 T]</td>
<td>t = 10 min</td>
<td>3.256 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t = 20 min</td>
<td>3.158 T</td>
</tr>
<tr>
<td>50 K</td>
<td>FC</td>
<td>t = 0 min</td>
<td>7.449 T</td>
</tr>
<tr>
<td></td>
<td>ZFC [20 T]</td>
<td>t = 10 min</td>
<td>6.577 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t = 20 min</td>
<td>6.405 T</td>
</tr>
</tbody>
</table>

79% 82.5% 86%
PFM Modelling Framework

Electromagnetic properties modelled as Model #2 (ZFC); magnetising fixture assumed as solenoid coil:

\[I_{\text{pulse}}(t) = N \cdot I_0 \frac{t}{\tau} \exp \left(1 - \frac{t}{\tau} \right) \quad \tau = 15 \text{ ms} \]

Thermal behaviour needs to be modelled during PFM; governing equations:

\[\rho \cdot C \frac{dT}{dt} = \nabla \cdot (k \nabla T) + Q \]

\[Q = E \cdot J \]

Heat source, coupling with EM model + \(J_c(B, T) \)

\(\rho = \) mass density (bulk 5900 kg/m\(^3\), indium 7310 kg/m\(^3\))

\(C = \) specific heat (measured, temperature-dependent)

\(k = \) thermal conductivity:

\(\kappa_{ab} = 20 \text{ W/(m·K)}, \ \kappa_c = 4 \text{ W/(m·K)}, \ \kappa_{\text{indium}} = 0.5 \text{ W/(m·K)} \)
PFM Single Pulse Results

- $t = 120 \text{ s} \rightarrow$ flux creep relaxation & cooling back to operating temp.

- Percentage of ZFC($t = 20 \text{ min}$):
 - 77 K 85%
 - 65 K 49%
 - 50 K 29%

- Four specific cases as initial conditions for 2nd pulse:
 - Partially-magnetised (PM), so-called 'M-shaped' profile
 - Under-magnetised (UM)
 - Fully-magnetised (FM)
 - Over-magnetised (OM)
For all T, trapped field after 2nd pulse exhibits two particular characteristics:
1) Increased trapped field, B_t, when the bulk is fully magnetised; maximum value when the 1st pulse results in full magnetisation
2) Increased activation field: applied field, B_{app}, required to fully magnetise the sample
PFM 2nd Pulse: Magnetic Flux Penetration

- Why does this occur?
 - More difficult for magnetic flux to penetrate the sample due to existing trapped field
 - Existing, induced supercurrent flows in opposite direction
PFM 2nd Pulse: Thermal Behaviour

- Why does this occur?
 - Reduced dynamic movement of flux = lower temperature rise for equivalent next pulse
 - Can examine the average temperature, T_{ave}, during & after PFM:

![Graph showing average and maximum temperature over time for different conditions.](Image)
Similar results are found for the 3rd pulse; however, increase in B_t is marginal, suggesting saturation has been reached.
PFM: Towards Multi-Pulse, Multi-Temperature

77 K → 65 K → 50 K

- At $t = +120$ s, temperature is lowered to next temperature (-0.5 K/s)
- Fully magnetised (FM) cases as initial conditions
- Maximum trapped field, $B_{t,max}$, slightly less than for multiple pulses at constant T
- More investigations & optimisation needed!
Summary

- A 2D axisymmetric finite element method based on the H-formulation was extended to investigate multi-pulse PFM.
- An increase in the trapped field, B_t, can be achieved after a 2nd pulse:
 - This is maximised when the 1st pulse results in full magnetisation; and
 - An increased applied field is necessary for the 2nd pulse.
- This occurs because:
 - It is more difficult for the magnetic flux to penetrate the already-magnetised sample.
 - There is a lower temperature rise from the reduced dynamic movement of flux.
- A 3rd pulse results in a marginal increase in B_t.
- Preliminary multi-pulse, multi-temperature investigation showed similar, but slightly lower, B_t.