AC Losses of Roebel Cables with Striated 2G YBCO Strands

J Pelegrin, E A Young, Y Yang University of Southampton

R. Nast, A Kario, W Goldacker KIT

Contents

- ☐ Methods
- ☐ A semi-quantitative analysis for "standard" Roebel cables
- ☐ Reduction of magnetization loss in striated Robel cable
- ☐ Field penetration in striated Roebel strand and cable
- ☐ Coupling current loss
- ☐ Conclusions

Methods: Samples by KIT

- 5.5mm wide Roebel strands formed by laser cutting
- Striation by laser scribing (5 and 10 filaments per strand)
- Post-oxidation for inter-filament resistance control

Methods: AC Loss Measurements

☐ Applied sinusoidal field

- \circ **B**₀ ≤ 0.2 T
- $5Hz \le f \le 2kHz$
- Measurements
 - O 3K ≤ T ≤ 100K
 - Single-turn saddle pick-up coil
 - Sample length $L \le 100$ mm

☐ <u>Strength</u>: Wide frequency range for

detailed probing of the

coupling current: essential for

twisted filaments.

☐ <u>Limitation</u>: No DC field

☐ <u>Mitigation</u>: Extended range of temperature

A Semi-Quantitative Analysis of Losses in "Standard" Roebel Cables (1)

Details modelled in 2d by Pardo, *Phys Rev B* 67 (2003) 3D necessary?

The blocks are quite simple:

Vertical stacks are closely packed and should remain almost strip-like Only 2 stacks interact magnetically side-by-side Transposition isolated? 5

A Semi-Quantitative Analysis of Losses in "Standard" Roebel Cables (2)

Thin strip loss factor per unit volume:

$$\Gamma(\beta) = \frac{Q}{2\mu_0 H_0^2 S}$$

$$= \frac{\pi}{5} \frac{w}{d} \beta^{-1} \left(\frac{4}{5\beta} \ln \left(\cosh \left(\frac{5\beta}{2} \right) \right) - \tanh \left(\frac{5\beta}{2} \right) \right)$$

$$\beta = \frac{H_0}{H_P}, \quad H_P = \frac{5}{2\pi} \sigma_c = \frac{5I_c}{2\pi w}$$

A. Two strips far apart: Uncoupled (UC)

$$\Gamma_{2\times UC} = \Gamma_{s}, H_{P,UC} = H_{Ps}$$

B. Two side-by-side strips electrically connected: Fully coupled (FC)

$$\Gamma_{2 \times FC} = 2\Gamma_{S}$$
, $H_{P,FC} = H_{PS}$

Two isolated side-by-side strips: magnetically coupled (MC)

$$\Gamma_{2\times MC} \sim \sqrt{2}\Gamma_S$$
, $H_{P,MC} \sim 0.75H_{PS}$
Higher loss than UC and lower H_P due to flux compression in between

A Semi-Quantitative Analysis of Losses in "Standard" Roebel Cables (3)

Stack of 4 strands: less than expected H_p

- A. Stack of m **zero** thickness strips should increase $\sigma_{cm}=m\sigma_{c}$ and $H_{Pm}=mH_{Ps}$ so that $\Gamma_{m}(\beta)=m^{-1}\Gamma_{S}(m^{-1}\beta_{s})$
- B. Finite thickness appears to reduce the saturation field

$$H_{Pm} = \frac{m}{1.6} H_{Ps}$$

C. The loss factor of a finite thickness stack

$$\Gamma_m(\beta) \sim m^{-1} \Gamma_S(1.6m^{-1}\beta_S)$$

A Semi-Quantitative Analysis of Losses in "Standard" Roebel Cables (4)

Magnetisation Loss in Striated Roebel Cable (1)

Losses of striated Roebel are lower at high fields

Saturation Fields of Striated Roebel Cable

- A. The saturation field of unstriated Roebel is about 4x of that for striated
- B. The saturation field of the striated Roebel are similar for different filament size
- C. The kink at H_{Ps} still visible in the unsaturated and very similar to the H_P of the striated. (could be by chance)

Magnetisation Loss in Striated Roebel Cable reduced by a factor of the filament number

Flux penetration and $\Gamma(\beta)$ of the striated strand and Roebel

- A. Similar $\Gamma(\beta)$ for striated strand and Roebel cable
- B. Although $\Gamma(\beta)$ is broader than that of a single trip, it's not as much as predicted.
- C. More understanding required

Coupling current Losses

- A. Coupling current is present but small.
- Dominates mostly at low fields when the magnetisation loss is small
- C. Time constant in Roebel cable is about 0.1ms
- D. High inter-filament resistance due to improved oxidation after laser scribing

Conclusions

- 1. A semi-quantitative analysis of unstriated Roebel seems to work reasonable well:
 - Simply 2 sidewise magnetically coupled stacks of strip-like strands
 - Isolated penetration of the transposition strand
 - o loss per unit volume of 2m-strand Roebel lowered by a factor $m/\sqrt{2}$ from that of a single strand
- 2. Striated Roebel has a lower loss than that of unstriated by a factor of the filament number per strand
- Coupling current loss is low with a very short time constant of 0.1ms
- More understanding required for the losses of striated Roebel as a function of field