

3S – Superconducting DC-Busbar for High Current Applications

S. Elschner^{1,3}, J. Brand¹, W. Goldacker¹, M. Hollik¹, A. Kudymow¹, S. Strauss¹,

V. Zermeno¹, C. Hanebeck², S. Huwer², W. Reiser², M. Noe¹

EUCAS 2017, Geneva, 3LO4-07

ITEP

¹ Karlsruhe Institute of Technology (KIT), Institute of Technical Physics (ITEP), Eggenstein-Leopoldshafen, Germany

² Vision Electrics Super Conductors (VESC), Kaiserslautern, Germany

³ University of Applied Science Mannheim, Mannheim, Germany

DC - busbars

Application	Current	Length
NaCl-electrolysis	20 kA	30-300 m
Data Centers	15 - 40 kA	40 – 200 m
Cu-electrolysis	40 – 80 kA	200 – 400 m
Al-smelters	Up to 500 kA	100 – 500 m

Superconducting DC – busbars

- Small ohmic losses
- 10:1 gain in weight and cross section
- Small AC (ripple) losses

3S – project

- Industrial NaCl electrolysis
- Total length: 25 m
- Nominal current: 20 kA
- 7 stiff elements (prefabricated)
- Short circuit current: 33 kA
- Test for one year at BASF-site

Partners:

VESC: Component development and manufacturing

KIT: Contact development

ILK: Cryogenics

ILK Dresden

Current leads: VESC, Univ. Kaiserslautern, Poster 4LP2-11

Funding: German Government, Federal Ministry for

Economics and Energy, Grant Nr. 03ET7525B

tapes

- moderate critical current (Ic ≥ 450 A)
- Short pieces needed
- Small orientation dependence
- Cu- stabilization depends on short circuit requirements (in 3S: 2 x 20 µm copper)
- Substrate 100 µm Hastellov

- Width: 12mm

Lay –out of tapes

Simulations of needed numbers of tapes, T = 70/77 K

=> 2 x 23 tapes, gap between tapes 2.5 mm, between stacks 40 mm

Superconducting stack

Thermal contraction (Hastelloy) $\Delta L(293 \text{ K} -> 77 \text{ K}) = 0.216 \%$

- 23 tapes
- spacer (2.5 mm) between tapes: Corrugated Cu-tape
- Wave form arrangement of the stacks
- Arbitrary angles possible

Lorentz forces

Cage-type structure

Expected:

interstack: F = 1000 N/m intrastack: F = 200 N/m

Corrugated copper tapes

Joints between stacks

Requirements

- Low resistance (1nΩ => P = 0.4 W)
- Applicable on the installation site
- Restricted place
- Good cooling properties
- Costs (no indium)

Preliminary tests:

⇒ face-to face contacts between individual tapes needed

Solution:

Stacks ending on **comb-type contacts**. Tapes soldered with their substrate side (back) on the teeth of the comb

Subscale prototype

- cross section full scale
- 2 strands, 2 x 23 tapes
- 3 elements, 70 cm each
- Two joints
- Operation in open bath cryostat (77 K)
 - strands alone
 - strands in series
 - strands in parallel
- Tests up to I = 10 kA (single strand)

4 joints:

 $R \leq 1 n\Omega$

 $P(@20 kA) \le 0.2 W$

U(I)-characteristics

6 segments L = 55 cm $E < 1 \mu \text{V/cm}$

U(single strand) ≤ U(serial)

Prototype 2-strand busbar: I = 20 kA at 77K (projected: 70 K)

Summary and outlook

Aim: DC busbar 25m, 20 kA

Concept: stiff elements to be joint on the installation site

Done:

- Identification of suitable tapes
- Lay-out of tapes
- Mechanical solutions for thermal contraction and Lorentz-forces
- Low resistance electrical contacts with P < 0.2 W
- Subscale model tested with the projected current I = 20 kA
- Simulation of ripple-losses ($P_{ripple} < P_{cryostate}$)
- Cryogenic concept (T = 70 K)

Next steps:

- Parallel operation
- Short circuit tests (33 kA, 100 ms)
- Manufacturing of elements
- Installation on electrolysis site (first tests 2018)