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Impact on SC transport
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Impact on manufacturing
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Forced Texturing
IBAD, ISD

Biaxially aligned buffer layer.  optional "cap layer": Protective Coating (Ag, Au, ...
YSZ, Ce0,, CGO, MgO.... Ce0, Y,0,

lon-Beam-Assisted Deposition: [BAD

Inclined-Substrate Deposition: ISD

Polycrystalline Substrate

Tape or Sheet = Biasially aligned YBCO fim

CHTH T - (PLD, Thermal Coevaporation, ...)

Thermo-mechanical
Texturing of Substrates (TMT)
RABITS

YBCO

Buffer-layer Architecture
.. Ce0, RED, ...

Rolling-Assisted-Biaxially-Textured Substrates
Ni, NiCr, NiV, .
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Driving question

Q: What is the dominant
mechanism limiting J_.GB in YBCQO?
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variations of the charge
carrier concentration
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Basics of field effect (FE)

lonic liquid based
FE device

Gate electrode i
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adapted from :
Ye et al. Nature Materials 9, 125 (2010)
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Basics of field effect (FE)

lonic liquid based

FE device
Gate electrode i Standard FE device
<L_ ;;;; “EDL (solid dielectric)
T
.‘ & . 9 > Bulk ionic ||qU|d
99 EiDC/ e Gate electrode
tra \ thin fil | 4 ™ surface _-_]-

Substrate

adapted from :
Ye et al. Nature Materials 9, 125 (2010)
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Device structure
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Sample preparation & characteristics

Our ultra-thin films :

on SrTiO3 substrate ([001]-tilt
bi-crystals)

buffer layer : 20uc PBCO
SC layer : 5uc of YBCO

Heated sample

. -

Carousel with | . '

PBCO and Y Bl . )\ MEEgE

T.(R=0) = 60K, capped YBCO targets Pe. X'l r'(

T<(R=0) = 45K, uncapped and - X
patterned -4 I 0. atmosphere

(=10-1 mbar)

Tc(R=0) = 20K with ionic liquid
——

(device ready)
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Tuning in GB free samples
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Tuning of a [001] tilt 8° GB

Cooling in remanent field (approx. 7mT)
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Tuning of a [001] tilt 8° GB

Cooling in remanent field (approx. 7mT)
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A clear increase of T¢ with doping is observed on both the intra- and inter-grain channels
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Tuning of a [001] tilt 8° GB

Cooling in remanent field (approx. 7mT)
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Tuning of a [001] tilt 8° GB

Cooling in remanent field (approx. 7mT)

oVv——m8@8@>-32YV
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Tuning of a [001] tilt 8° GB

Cooling in remanent field (approx. 7mT)

oVv——m8@8@>-32YV
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Tuning of a [001] tilt 8° GB

Extrapolating our results (not recorded in absolute zero
field) within the RCSJ model gives :
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The parameters of the junction are strongly improved

UNIVERSITY OF GENEVA



Tuning of a [001] tilt 8° GB

Extrapolating our results (not recorded in absolute zero
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Tuning of a [001] tilt 8° GB

Extrapolating our results (not recorded in absolute zero
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The parameters of the junction are strongly improved
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Tuning of a [001] tilt 8° GB

Yet Jcge/Jc displays a surprising behavior

T. (R=0) (K)
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Tuning of a [001] tilt 8° GB

But Jc,ge and Jc have different relation to the superfluid density :
(estimated by 1/A2, A: London penetration depth)

Jc.gB o< 1/A2 while Jc oc (1/A2)372

Tunneling of
the SC
condensate

e N

valid for a thin
film
(thickness<A)

Talantsev and Tallon
Nat. Comm., 6, 7820 (2015)
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Tuning of a [001] tilt 8° GB

But Jc,ge and Jc have different relation to the superfluid density :
(estimated by 1/A2, A: London penetration depth)

Jc.gB o< 1/A2 while Jc oc (1/A2)372

Tunneling of
the SC
condensate

From a previous study :

A. Féte, L. Rossi, A. Augieri, C. Senatore, APL 109 192601 (2016)
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film
(thickness<A)

Talantsev and Tallon
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Tuning of a [001] tilt 8° GB

Taking into account this yields a relatively good fit

T. (R=0) (K)

Refinements of this model shall include a dependence of
the barrier height with electric field effect and the evolution
of the coherence length across the phase diagram
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Other angles

Given the vicinity of the transition from JJ (weak-link) to
strong link behavior we explored lower GB angles, namely :
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Other angles

Checking against a second reference channel on the same
device makes it much more complicated to be conclusive

[] reference channel (no GB) . . . @ 42K

* channel with GB O 2 8 19 (T)

B reference channel 2 (no GB)
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Conclusions and Perspectives

Facts :

1) A strong tuning of the transport across an 8° grain boundary
was achieved.

2) For lower angles the transparency of the grain boundaries is
such, that the tuning, if present, is hidden by data scattering

Perspectives :

The vicinity of the strong link regime for films grown on 8°
bicrystals and the difficulty to observe any difference between
inter- and intra-grain transport for films on 2° to 5° bicrystals
provide the following research orientation :

1) Find 7° bi-crystals and repeat

2) Work with thicker films (able to sustain higher initial doping)
hoping that the limited penetration depth of the electric field
won’t be detrimental
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