

Photoresponse of La_{1.85}Sr_{0.15}CuO₄ nanostrip

<u>H. Shibata¹, N. Kirigane¹, K. Fukao¹, D. Sakai¹, S.</u> Karimoto², H. Yamamoto²

Kitami Institute of Technology, Japan
 NTT Basic Research Laboratories, Japan

Outline : • Introduction

- Fabrication
- Photoresponse
- Summary

13th European Conference on Applied Superconductivity

Introduction

Merits:

- Detection efficiency close to unity 93%, WSi (Nat. Photon 7, 210 (2013)) 92.1%, NbN (arXiv1609.00429) 92%, NbTiN (CLEO2017. FF1E.1)
- Ultralow dark count rate <10⁻²Hz (Appl. Phys. Express 6, 072801 (2013)) <10⁻⁴Hz (Opt. Lett. 40, 342 (2015))

13th European Conference on Applied Superconductivity

 Single photon detection at 10 K (Appl. Phys. Express 7, 103101(2014)) at 11 K (CLEO2017, FF1E.7)

- Optical response is observed, but not singlephoton detection (SUST 27, 044027 (2014))
- T_c strongly decreases as the thickness decreases (SUST 29, 065017 (2016))

NT7

1 u.c. = 1.17nm

Physica C274, 227 (1997)

13th European Conference on Applied Superconductivity

Fabrication

Ultrathin film growth of La_{1.85}Sr_{0.15}CuO₄

- E-beam deposition of metal sources
- Oxidation using radical oxygen (O*)
- Precise deposition rate control using EIES
- In-situ RHEED monitor
- •LaSrAlO₄ substrate
- ${}^{\bullet}T_{s} = 670^{\circ}C$

MBE apparatus

13th European Conference on Applied Superconductivity

SEM image (before milling)

- 10 μ m × 100 nm × 5 nm single nanostrip by Ar ion milling
- AIN passivation

13th European Conference on Applied Superconductivity

Current-Voltage (I-V) Characteristics

- A clear voltage jump at I_c
- Hysteresis behavior
- I_c (3 K) = 115 μA
- $J_c = 2.3 \times 10^7 \,\text{A/cm}^2$
- Slope decreases at 45K

 $\begin{array}{l} J_{depair} = 7.6 \times 10^7 \, \text{A/cm}^2 \\ (\xi_{ab} = 3.2 \text{nm}, \, \lambda_{ab} = 204 \text{nm}) \end{array}$

Optical Setup

 $1.5\mu m$ femto sec pulse laser (100MHz)

Photoresponse

13th European Conference on Applied Superconductivity

Optical intensity dependence

- Clear photoresponse at high bias current (I_{bias} = 111µA)
- Pulse height decreases as the optical intensity decreases
- Pulse disappears below -10 dBm

13th European Conference on Applied Superconductivity

Temperature dependence

- The pulse height decreases as the temperature increases
- The pulse can be observed up to 30 K

13th European Conference on Applied Superconductivity

20 September 2017

NTT

Possibility of single-photon detection using La_{1.85}Sr_{0.15}CuO₄

Comparison with MgB₂-SSPD

- 300nm-wide MgB₂
 Bolometric response
- 200nm-wide MgB₂
 Multi-photon detection regime
- 100nm-wide MgB₂ Single-photon detection regime

IEEE Trans. Appl. Supercond. 19, 358 (2009), Appl. Phys. Lett. 97, 212504 (2010)

13th European Conference on Applied Superconductivity

Large I_c value

 I_c =115µA is about 5 times larger than the standard SSPD (I_c =20µA).

- Nanostrip with 20nm-wide × 5nm-thick is required of single-photon detection using La_{1.85}Sr_{0.15}CuO₄
- The present La_{1.85}Sr_{0.15}CuO₄-SSPD may be useful for detecting highenergy particle (electron, x-ray, neutron, biomolecular ion, etc)

- High quality La_{1.85}Sr_{0.15}CuO₄ nanostrip with 100nm
 - wide \times 10 μm -long \times 5 nm-thick
- Clear I-V characteristics
 - (voltage jump, hysteresis, $\sim J_{depair}$)
- ✓ Photoresponse up to 30K
- Needs to reduce the width of the nanostrip for singlephoton detection

Supecond. Sci. Technol. 30, 074001 (2017)

13th European Conference on Applied Superconductivity