Optically probing the detection mechanism in amorphous MoSi SNSPDs

M. Caloz¹, M. Perrenoud¹, C. Autebert¹, B. Korzh¹, C. Schönenberger², R. Warburton², J. Renema³, H. Zbinden¹, F. Bussières¹

¹ GAP-Quantum technologies, University of Geneva
² Physics department, University of Basel
³ Clarendon Laboratory, University of Oxford

European Conference on Applied Superconductivity
Sept. 2017, Geneva
Introduction

(a) Superconducting nanowire

(b) Single photon excites an electron

(c) With $I_b \sim I_c$
Superconductivity broken \rightarrow signal

Performances:
• High efficiency: $\sim 93\%$ at 1550 nm
• High repetition rate: > 20 MHz
• Low jitter: < 20 ps
• Low DCR: < 10 Hz
• No after pulsing effect

Motivation:
• Detection mechanism is still not completely understood
• Understand fundamental limits
• Reach better performances
• No extensive studies on amorphous MoSi

still a challenge to combine all of them!

Some research themes in the group
• High-speed, long-distance QKD experiments
• Long-distance quantum communication in optical fibres
• High-performance single-photon detection
 ‣ direct integration in the group experiments

SNSPD development in 3 years
• Developed a high-yield fabrication process based on amorphous MoSi
• Complete system:
 ‣ electronics
 ‣ packaging
 ‣ cryostat

We now achieve
• System detection efficiency: > 80%
• Jitter < 30 ps
• Counting rate > 10 MHz
• DCR < 10 Hz

Misael Caloz, University of Geneva
Detection mechanism in MoSi SNSPDs
Detection models

How to probe the detection mechanism:

- **Energy-current relation**, $I_{\text{bias}} = f(E)$
- **Vortex** assisted mechanism

\[I_{\text{bias}} = f(E) \]

non-linear

linear

Nanofabrication

Molybdenum silicide:
- Mo$_{0.8}$Si$_{0.2}$: **5-7 nm** thick film by co-sputtering deposition
- **Different design**:
 ‣ nanowire widths
 ‣ fill factor
 ‣ SNAP, spiral, etc…
- **Single layer** optical cavity (no TiO$_2$)
- 16x16 um2 area
- Self aligned package technique
Probing the detection mechanism

Photon count rate
- Unpolarized CW light from halogen lamp
- Calibrated monochromator: \(\lambda : 550 \rightarrow 2050 \) nm

\[
f(I_{\text{bias}}) = \text{PCR} - \text{DCR}
\]

Jitter
- Constant fraction discriminator (CFD)
- 6 ps laser pulses, 1550 nm
Photon count rate

- **First study** with a **plateau** over the full range of energies (unique to MoSi and WSi)
- **All information** on the detector behavior
- If the photon deposits more energy when absorbed → less bias current needed
- Discriminator settings limits to 750 nm

Photon count rate

- **Non-linear** over the full energy range
- Other temperature measurement

![Graph showing energy vs. count rate normalized for different wavelengths and bias currents. The graph indicates non-linearity and the necessity of diffusion, as well as other temperature measurements.]

Photon count rate

Transition width

\[\Delta I_b = I_b^{80\%} - I_b^{20\%} \]

• possible thanks to the **large plateau** region

\[\Delta I_b (\mu A) \]

\[\text{Energy (eV)} \]

\[\text{Wavelength (nm)} \]

\[\text{Normalized bias current} \left(I_b / I_b^{50\%} \right) \]

\[\text{Count rate normalized} \]

\[\text{Bias current} I_b (\mu A) \]

\[\text{Count rate normalized} \]

→ **50% reference value**

→ Error function fits
 ‣ Fano fluctuations: number of quasiparticle fluctuates
 ‣ position dependent effect?

→ **New intrinsic** parameter to give input to the theory

M. Caloz et al. *APL* 110, 083106 (2017)

Probing the detection mechanism with jitter measurement

- Intrinsic jitter is directly related to the hotspot dynamics

\[j_{\text{system}} = \sqrt{j_{\text{noise}}^2 + j_{\text{setup}}^2 + j_{\text{intr}}^2} \]
\[j_{\text{intr}} = \sqrt{j_{\text{hotspot}}^2 + j_{\text{geometric}}^2} \]

- possible thanks to 7 nm thick MoSi
 - high bias current operation → better SNR → jitter is not dominated by the noise

MoSi meandered devices can have very low jitter: 26 ps!

Same behavior for different designs

This evolution is due to the intrinsic jitter.
Detection mechanism in MoSi SNSPDs

Misael Caloz, University of Geneva

Non-gaussian tail
• current dependent

\[j_{\text{system}} = \sqrt{j_{\text{noise}}^2 + j_{\text{setup}}^2 + j_{\text{intr}}^2} \]

• All other contributions are gaussian
→ non gaussian tail due to intrinsic behavior
Residues maximum $\sim I_{\text{sat}}$

Even in the deterministic region (plateau), the jitter (3 and 20 dB) **decrease a lot**

intrinsic limitations?

Measurement at lower wavelengths would be very interesting: probing far in the plateau

Nice measurement to study the detection mechanism

M. Caloz et al. *to be submitted*
Main points:

- PCR with a **large plateau**
 - All detector information
 - Non-linear energy-current relation
 - QP diffusion only is not sufficient to explain our data
 - opportunity to reveal new intrinsic parameter
- Jitter measurement
 - great improvement for amorphous material
 - studying the intrinsic jitter behavior
- Experimental data with MoSi
 - give inputs to theorists
The team

Hugo Zbinden Félix Bussières now at JPL

Misael Caloz Matthieu Perrenoud Claire Autebert Boris Korzh

Christian Schönenger Richard J. Warburton Jelmer Renema

Detection mechanism in MoSi SNSPDs