

THz heterodyne detectors based on MgB₂ thin films B. S. Karasik¹, D. P. Cunnane¹, N. Acharya², W. K. Withanage², and X. X. Xi²

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA ²Temple University, Philadelphia, PA 19122, USA

State and the second

Outline

- Motivation
- MgB₂ material and thin films
- HEB mixer
- JJ mixer
- Future directions
- Summary

Motivation

- Cryocooling in space to 20 K rather than to 4 K
- [HD] 2.70 THz, [OIII] 3.40 THz, [OI] 4.74 THz, [NIII] 5.85 THz
- IF bandwidth up to 8 GHz in order to capture emission from multiple molecular clouds along the line of sight

Superconductivity in MgB₂

Hybrid Chemical-Physical Vapor Deposition (HPCVD)

- the process yields very thin films (\approx 10 nm) with high T_C and low resistivity
- on 6H-SiC, MgB₂ films grow predominantly c-axis oriented

As-grown and ion-milled films

15 nm thick films

3EO2-05

HPCVD+ion mill

Milled-down HPCVD films

N. Acharya et al., APL Mater. 4, 086114 (2016)

7

MgB₂ HEB Mixer

D. Cunnane et al., IEEE Trans. Appl. Supercond. 27(4), 2300405 (2017)

Fast escape of phonons from MgB₂ to SiC

Because of the high electron temperature (~ T_C), phonon escape ($\tau_{es} = 4d/v_s \alpha$) is the bottleneck for the energy relaxation in MgB₂ HEB

Material	MgB ₂	NbN
v _s (km/s)	8-10	2.5

Antenna-coupled MgB₂ HEB

Mixer test setup

IV's and IF power

 $3\,\mu m$ x 1 μm x 5 nm HEB device

Noise bandwidth

Corrected for beamsplitter and AR coating loss

Noise temperature vs bath temperature

Corrected for beamsplitter and AR coating loss

Summary of noise temperature data

Corrected for beamsplitter and AR coating loss

Josephson Junction Mixer

D. Cunnane et al., Appl. Phys. Lett. 109, 112602 (2016)

In-plane Josephson junction

- in-plane (a-b) WL junction is due to the film overetching during the ion mill process
- similar technique using FIB was employed for fabrication of YBCO JJ Cybart et al., NatNANO 10, 598 (2015)
- because of the strong c-axis orientation of the film, σ -gap contributes in Josephson tunneling

Josephson mixing at 600 GHz

Shapiro steps at V = hv/2e

A. Brinkman et al., Phys. Rev. B 65, 180517R (2002)

JJ mixer noise temperature

- NT \approx 1,500 K has been measured at 1.9 THz (after correction for optical loss)
- focused development of this technology will likely improve NT

Future directions

- Uniform HEB devices of submicron size
- films on large (at least 3") wafers to allow for projection photolithography
- ★ smoother films (δ_{rms} < 1 nm) similar to those produced by MBE technique

- Waveguide coupled mixer
- films on Si membranes

- Wafer-scale reproducible Josephson junctions
- Josephson junctions using FIB direct milling

MgB₂ films on Si

In-plane JJ using a neon FIB

Summary

• The HPCVD technique in combination with ion milling yields high quality ultrathin MgB_2 films suitable for development of THz heterodyne detectors operating up to 15-20 K

• High thermal relaxation rate in MgB₂ films makes possible an IF bandwidth in HEB ~ 10 GHz

• Low-noise MgB₂ HEB mixers can work up to 5 THz

• Josephson mixing is promising for heterodyne detectors up to 2 THz

• More work is needed to improve the film/device quality

jpl.nasa.gov