

Superconducting RF and Magnet Technologies for International Linear Collider (ILC) and Compact Linear Collider (CLIC)

Akira Yamamoto (KEK/CERN)

for the

Linear Collider Collaboration (LCC)

to be presented at EUCAS-2017, Geneve, 21 Sept., 2017

Outline

- Introduction
- Superconducting RF (and Magnet) Technology
 - Matured for the ILC realization
- Superconducting Magnet Technology
 - Applicable for CLIC Staging-380: Klystron Solenoid
- Summary

Outline

- Introduction
- Superconducting RF (and Magnet) Technology
 - Matured for the ILC realization
- Superconducting Magnet Technology
 - Applicable for CLIC Staging-380: Klystron Solenoid
- Summary

Features of Superconducting RF

- Higher efficiency:
 - More beam power for less plug power,
- Lower RF frequency:
 - Relaxed tolerances & smaller emittance dilution

- High Q₀ (~10¹⁰):
 - Small surface resistance \rightarrow nearly zero
 - Capable of efficientl accelerating
 - ~160MW @ 500GeV (ILC)
- Long beam pulses (~1 ms or CW) :
 - intra-pulse feedback (in 1 ms pulse)
- Large aperture
 - better beam quality w/ larger aperture –
 - lower wake-fields
- Cryogenics required

LINEAR COLLIDER COLLABORATION

Advances in SRF Field Gradient

LINEAR COLLIDER COLLABORATION

Advances in SRF Field Gradient

. . .

3000

European XFEL SRF Linac becoming a prototype for ILC

Progress:

2013: Construction started

2016: E- XFEL Linac completion 2017: E-XFEL beam start

Note : ~ 1/10 scale to ILC-ML

2000

1500

1.3 GHz / 23.6 MV/m 800+4 SRF acc. Cavities 100+3 Cryo-Modules (CM)

XFEL site

2500

European XFEL: SRF Cavity Performance

(EZ): E usable 28.6 ± 4.8 [MV/m]), w/ BCP (instead of 2nd EP)

A. Yamamoto, 170921

ILC SRF Cost-Reduction R&D in progress

Nb material : ingot directly sliced

- w/ optimum RRR (> ~ 250) &
- clean surface

D. Reschke, SRF-11, Chicago, TUPO015 (2011)

SRF cavity fabrication for high-Q, high-G

-w/ a new baking recipe discovered at Fermilab

- N2 infusion at 120 C directly after heat treatment at 800 C,
 - Same cavity, sequentially processed, no EP in b/w
- Reached: G = 45.6 MV/m

Q ~ 2.3e10 @ 35 MV/m :

A. Grassellino et al., Superconductor Science and Technology, V30, No. 9 (2017) 094004

ILC Staging Study in Progress

	Unit		ILC	
CoM. Energy	GeV	250	500	1,000
Site Length	km	~21	31	50
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.82	1.8	3.6
Acc. Gradient	MV/m	31.5	31.5	31.5/45
Res. Frequency	GHz	1.3	1.3	1.3
Repetition rate	Hz	5	5	4
IR, v. beam-size	nm	7.7	5.9	2.7
Beam Power	MW	2 x 2.9	2 x 5.2	2 x 13.6
AC Power	MW	129	163	300
Value Cost in TDR	BILC	< 0.65	1	TBD

Outline

Introduction

Superconducting RF (and Magnet) Technology

Matured for the ILC realization

Superconducting Magnet Technology

- Applicable for CLIC Staging-380: Klystron Solenoid

Summary

CLIC Staging Scenario Proposed

Klystron-based First Stage (380 GeV)

The pulse compressor used for parameter determination in the Baseline Report has been still a previous version But used updated model

A. Yamamoto, 170921

380 GeV Klystron Tunnel View

Figure 3: The XL5-1 klystron ready to ship.

Possible R&D Approaches

Objective

- Demonstrate SC-mag technology to be applicable & power saving
- A full-scale model magnet to reach operation with Klystron
- A prototype solenoid using MgB₂
 - B = 0.8 T (central field)
 - Coil size: ~ 0.35 m (dia.), ~ 0.35 m (length)
 - Cryostat size: ~ 0.25 m (ID), ~0.45 m (length)
 - Op. **Temp**. **20 K**, conduction cooled by using a cryo-cooler
 - AC-plug power saving: > 20 KW \rightarrow < 2 kW (\rightarrow 1/10)
- A goal with operation of the magnet assembled with an existing Klystron

Future:

- Pairing the solenoid, for reducing # CLs.
- HTS solenoid (if cost-effective),
- Cooling by using a dedicated cryogenic system for a series of Klystron & Solenoids to reach < 1 kW AC-plug power /system
- \rightarrow Saving anticipated : ~ 20kW x 4,500 = ~ 90 MW in CLIC-staging 380.

Summary

- SRF technology has been matured to realize ILC,
 - based on the progress in SRF cavity surface understanding , and on the successful European XFEL SRF accelerator.
- The staging at 250 GeV is expected for early starting.
- SC magnet technology applying MgB₂ may be a very effective approach for Klystron-Solenoid power to be greatly saved in the RF system at the CLIC staging scenario at 380 GeV.
- The feasibility is to be demonstrated.

ILC GDE to LCC

A. Yamamoto, 170921

Superconducting Phases and Applications

– SC magnet → mixed state

- Bc2 = limiy for Magnet
 - NbTi : **11.5 T**
 - Nb3Sn : **21.5 T**
 - MbB2: 39 T
- Vortices dissipate in !

− SC RF → Meissner state

- B_{sh} = limit for SRF
 - Nb : 0.21 T
 - Nb3Sn: 0.43 T

= ~ 0.8 B_{sh} A. Yamamoto, 170921

Possible Choices among SC Materials

Material	T _c [K]	В _{с1} (0) [T]	B _{sh} (0) [T]	B _c (0) [T]	в _{с2} (0) [T]	Pen. depth λ (0) [nm]	
Nb	9.2	0.18	0.21	0.25	0.28	40	
NbTi	9.2 ~9.5	0.067			11.5 ~ 14	60	
NbN	17.3	(0.02)				150-200	
Nb ₃ Sn	18.3	(0.05)	0.43	0.54	28 ~30	80	
MgB ₂	39	(0.03)	0.31	0.43	39	140	
YBa ₂ Cu ₃ O ₇ (REBCO family)	92	0.01		1.4	100	150	20um Cu 20um Cu 20um Hamo- 20um Hamo-
Bi ₂ Sr ₂ Ca ₁ Cu ₂ O ₈ (BSCCO-2212)	94	0.025			>100/30	1800	
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀ (BSCCO-2223)	110	0.0135			>100/30	2000	
Note Important for:		RF			Magnet		

Successful Yield in European XFEL SRF 9-cell Cavity Performance

Process & Test	Gradient (G) <u>Yield (Y)</u>	E-XFEL G (@ Q₀≥10¹º) Yield	ILC spec. G (@ Q₀≥10¹º) (Yield)	
1 st pass	G _{av.} (MV/m)	33.5 MV/m	≥ 35 MV/m	
	<u>Y (%) at >28 MV/m</u>	<u>63 %</u>	<u>75 %</u>	
1 st +2 nd	G _{av.} (MV/m)	33.4 MV/m	≥ 35 MV/m	
	<u>Y (%) at >28 MV/m</u>	<u>82 %</u>	<u>90 %</u>	
1 st +2 nd +3 rd	G _{av.} (MV/m) <u>Y (%) at >28 MV/m</u>	33.4 MV/m <u>91 %</u>		

Standard Procedure Established

	Standard Fabrication/Process			
Fabrication	Nb-sheet purchasing			
	Component Fabrication			
	Cavity assembly with EBW			
Process	EP-1 (~150um)			
	Ultrasonic degreasing with detergent, or ethanol rinse			
	High-pressure pure-water rinsing			
	Hydrogen degassing at > 800 C			
	Field flatness tuning			
	EP-2 (~20um)			
	Ultrasonic degreasing or ethanol (or EP 5 um with fresh acid)			
	High-pressure pure-water rinsing			
5	Antenna Assembly			
	Baking at 120 C			
Cold Test (vertical test)	Performance Test with temperature and mode measurement			

Key Process

Fabrication

- Material
- EBW
- Shape

Process

- Electro-Polishing
- Ethanol Rinsing or
- Ultra sonic. + Detergent Rins.
- High Pr. Pure Water cleaning

Standard Procedure Established

	Standard Fabrication/Process			
Fabrication	Nb-sheet purchasing			
	Component Fabrication			
	Cavity assembly with EBW			
Process	EP-1 (~150um)			
	Ultrasonic degreasing with detergent, or ethanol rinse			
	High-pressure pure-water rinsing			
	Hydrogen degassing at > 800 C			
	Field flatness tuning			
	 N2 infusion at 120 C directly after heat treatment at 800 C 			
	American			
	Baking at 120 C			
Cold Test (vertical test)	Performance Test with temperature and mode measurement			

Key Process

Fabrication

- Material
- EBW
- Shape

Process

- Electro-Polishing
- Ethanol Rinsing or
- Ultra sonic. + Detergent Rins.
- High Pr. Pure Water cleaning

A. Grassellino, S. Aderhold, TTC-2016

New Surface Process recently demonstrated at Fermilab, "N₂ Infusion at 120 C"

Comparisons of Future Linear Colliders (as of 17/01/26)

	Unit	ILC H, tt _{-bar} , HHZ, tt _{-bar} H			CLIC tt _{-bar} , tt _{-bar} ,		
Technology		Linear SRF, Klystron-driven			Linear NRF, Two-beam-driven		
Energy (CoM)	GeV	250	<u>500</u>	1,000	<u>380</u>	500-A/B	<u>3,000</u>
Acc. Length	km	~21	31	50	11	13	48
Lumin. / IP	10 ³⁴ cm ⁻² s ⁻¹	0.82*	1.8 / 3.6	3.6	1.5*	2.3	5.9
Acc. Gradient	MV/m	31.5	31.5	31.5/45	72	80/100	100
Res. Frequency	GHz	1.3	1.3	1.3	12	12	12
IR, v. beam- size	nm	7.7	5.9	2.7	2.9	2.3	1
Beam Power	MW (2-beams)	2 x 2.9	2 x 5.2 / N/A	2 x 13.6		2 x 4.7	2 x 14
SR loss	MW						
AC Power	MW	129	163 / 204	300	252	271	589