4LO1-06

Dislocation substructures, and low temperature N doping impact on flux penetration and trapping in SRF Nb

Shreyas Balachandran, Santosh Chetri, Anatolii Polyanskii, David C. Larbalestier and

Peter J. Lee:

Applied Superconductivity Center, NHMFL, Florida State University

Pashupati Dhakal: Jefferson Lab

Mingmin Wang, Thomas R. Bieler: Michigan State University

Applied Superconductivity Center National High Magnetic Field Laboratory Florida State University

UNIVERSITY

N2 Treatments have advanced SRF performance but at the expense of flux trapping

MICHIGAN STATE

- High Temperature N doped cavities: High Q₀ at low accelerating gradients
- No 120°C bake needed
- But residual flux trapping on cool-down is an issue
- Recently (2016): FNAL has reported both increase in Q and E_{acc} in cavities infused with Nitrogen at 140°C - 170°C. No final EP required
- Doping is here . . . and here to stay:
 - Is it possible to obtain high Q_0 and high E_{acc} ?
 - What happens during the doping process? Surface composition...
- Which is better LG/FG? Role of boundaries and defects

Our Goals

Characterization/Analysis of current cavity technology:

- Correlate metallurgical state and magnetic properties with strategically characterized samples
- SRF relevant properties- Surface superconductivity(H_{c3}), Surface pinning, defect classification
- Comprehensive microstructural, chemical, and property evaluation of SRF cavity coupons/ SRF grade coupons

Develop coupon measurement techniques to:

- Explain and predict SRF cavity performance
- Enable faster/cheaper testing of new materials, processing strategies, and techniques

RDL-02 Cavity test results from JLAB

Flat sample for XPS and SEM

Jefferson Lab

FUCAS 201

No post chemistry after each furnace treatment.

Coupon DC magnetization Result: No changes in <u>bulk</u> behavior observed with low temperature N infusion

- No clear variations in early flux penetration behavior observed by DC magnetization measurements
- Bulk pinning characteristics are similar in all the coupon cylinders analyzed

Coupon Flux Trapping Method: Magnetization measurements

Result: Baking causes incomplete flux expulsion with or without low temperature N infusion during bake

- No DC flux trapping in 800°C/3h coupon cylinder
- Lowest flux trapping and best overall Q in 140°C/48h+N infused sample

Magneto optical (MO) imaging of disk: Flux trapping is a bulk effect with microstructural correlations

3 mm diameter: EDM + BCP of asreceived Ningxia sample

Applied field H points out of plane

- GB oriented normal to the applied field causes flux penetration (known)
- The fork in the sample was unexpected

Magneto optical: DC flux trapping can occur due to low angle boundaries in SRF Nb

MICHIGAN STATE

Jefferson Lab

- Misorientation measurements across boundaries indicates a low-angle boundary with a misorientation of 3°
- Identifying these boundaries are a challenge

0

AC Susceptibility: Higher surface superconductivity (H_{c3}) in low temperature baked Nb samples with and without N infusion

H_{c3} coupon tests correlate with mean free path measured in cavity tests

- *H*_{c3} value increases linearly with decrease in surface mean free path
- First direct correlation between coupon test and cavity test

Surface Chemistry method: Angle resolved XPS

- Identification of surface
 chemical composition possible
- Angle resolved XPS (θ) is able to provide depth profiling
- Lower take off angles (θ↓) graze the surface- Majority signal from near surface
- Higher take off angles (θ[↑]) more averaging possible

FESEM: Backscattered electron images indicate granular features in N infused samples

- Back scatter imaging reveals surface sensitive strain and phase contrast
- Granular features appear in low temperature N infused samples

Surface analysis by XPS: Presence of nitrogen in the form of nitride detected

- Nitrogen peaks detected in samples after 140°C/48h, 160°C/48h N infusion treatments but not for the 120°C/48h N
- The granular phase contrast could be indicative of a Nb nitride phase

XPS Result 2: presence of NbN1-xOx in N infused samples

MICHIGAN STATE

- N infused Nb has a layer of NbN_{1-x}O_x (Nb oxy-nitride)
- Nb signal appears in sample with no N infusion, but is absent in the N infused sample, indicating thickness of the oxynitride layer

Angle resolved XPS: Nb-3d peaks indicate significant Nb oxy-nitride after 140°C, 160°C, N infusion

 Increase in take off angle indicates more signal from the bulk than surface

- NbN_{1-x}O_x forms below Nb₂O₅ for N₂/140°C and N₂/160°C
- But no NbN_{1-x}O_x signal for the N₂/120°C sample

Summary and Conclusions

- Systematic examination of coupon samples provides methodology to relate surface superconducting behavior with cavity performance
 - First direct comparisons between cavity test and coupon samples presented
 - H_{c3} from coupon measurements correlates well with mfp calculations from cavity tests
 - High fidelity technique- Sample surface is largely unmodified during these investigations
- Flux trapping observed in low temperature N infused coupon samples
 - Bulk magnetization measurements show no significant difference in early flux entry in N infused samples compared to baseline measurements
 - N infusion could possibly enhance flux penetration, and trapping
- Nb oxy-nitride (NbN_{1-x}O_x) present in N infused coupon samples
 - Nitride presence in the form of oxy-nitride is detected in 140°C, and 160°C coupon samples
 - Nb-NbO interface is not detected in the probed volume, suggesting NbN_{1-x}O_x is thicker than ~10 nm
 - Magnetic properties of oxy-nitrides are unknown...

Thank you!

Acknowledgements

 This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Numbers # DE-SC 0009960 (FSU) and DE-FG02-09ER41638 (MSU) and the State of Florida. Additional support for the National High Magnetic Field Laboratory facilities is from the NSF: NSF-DMR-1157490. We also thank Chris Compton at FRIB for providing a large grain Nb slice used for some of this work

Bonus slides

Flux penetration observations in SRF Nb by Magneto Optical Imaging

MOI Schematic and principle

- Allows direct Imaging of Bz in plane above superconductor
- Double Faraday effect occurs in reflective mode using Bidoped YFe indicator film with in-plane magnetization

ZFC: Cooled in the absence of external fields to below T_c , at T < T_c visualized in an external magnetic field.

FC: Sample cooled below Tc in the presence of a magnetic field, and visualized after removing the external field

