

High Trapped Fields in C-doped MgB₂ Bulk Superconductors Fabricated by Infiltration and Growth

A. Bhagurkar & N. Hari Babu BCAST, Brunel University London, UK

A R Dennis, J H Durrell, D. A. Cardwell Department of Engineering, University of Cambridge, Cambridge, UK

A. Yamamoto

Dept. of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, Japan

Magnesium Diboride

(°C)

Temperature (

800

- Superconductivity discovered in 2001 ٠
- Conventional superconductor ٠ (Phonon mediated superconductivity)
- $T_c = 39 \text{ K}$ (Highest amongst intermetallics)
- Larger coherence length
- Strongly linked current ٠ flow in polycrystals makes fabrication easier
- Relatively inexpensive ٠
- Light weight ٠

Boron atomic % Applied Phy. Let. 78, 2678 (2001)

Solid+MgB₂

Sintering (Ex-situ)

- Low sinterability
- High Temperature
- High pressure
- Poor intergrain coupling
- Poor connectivity

Sintering (In-situ)

- High Mg vapor pressure
- Large porosities (upto 50%)
- Brittle
- High pressure
- Dense structure possible by diffusion route, But small cross section

Scope to improve connectivity and coupling.

Yamamoto et al Jpn. J. Appl. Phys. 51 (2012) 010105

Infiltration and Growth

- Ba-Cu-O liquid phase infiltration in to Y₂BaCuO₅ preform and then growth of YBa₂Cu₃O₇ phase
- Ambient pressure, No requirement of high pressure apparatus.
- Scaling up is much easier.
- Complex shapes (other than cylindrical shape) are possible
- Final product has significantly reduced porosity

BSG

Infiltration and Growth Process

Challenge

http://fs.magnet.fsu.edu/~lee/plot/plotarchive.htm

Ļ

High Anisotropy

Rapid drop in J_c with external field!

In-field performance of bulk MgB_2 must be enhanced if LTS are to be replaced.

BSG

Solution?

- Grain refinement → Pinning (Increased Grain Boundary Density)
- Irradiation
 → Pinning
 (Vacancy, dislocations, stacking faults)

<u>C-Doping</u> \rightarrow Impurity Scattering \rightarrow H_{c2}

 \rightarrow Reduced Anisotropy

 \rightarrow Lattice strains \rightarrow Pinning

SiC and B₄C

Subject to IG process

(100-x)%B + x% B₄C/SiC x in weight proportion

 x_i : Actual doping in Mg(B_{1-xi}C_{xi})₂

M-T

B₄**C**: Homogeneous distribution of C at the atomic scale

Phase Analysis

[1] Yamamoto *et al.Supercond. Sci. Technol.* **18** 1323 (2005).
[2] Lee *et al. Physica* C **397** 7 (2003).

Strain Analysis: Williamson-Hall Method SG

J_c and Pinning Force

Gradient of F_k correlates with strain

Eliminating Mg channels

Presence of residual Mg, especially in the form of <u>continuous channels</u>, may have an adverse effect on bulk properties such as the trapped field, despite superior local J_c

BSG

Modified Precursor IG Method →Incorporated (10% mole) MgB₂

Trapped Field measurements

- C doping→ Enhanced trapped field
- Less than 1% difference in trapped field recorded on top and bottom.
- **Trapped field of 4.15 T**, highest amongst samples under ambient pressure.
- Increase achieved by simple B₄C addition, without using expensive techniques.
- Flux distribution needs further attention

Field Decay

- Logarithmic decay with time
- Faster decay with C-doping
- $U = U_0 \left(1 \frac{T}{T_c}\right)^{\alpha_c}$
- U: Height of potential well

Flux lines can overcome pinning barrier and migrate relatively easily

 $\nu = \nu_0 e^{\frac{-U_0}{k_B T}}$

v: Jump Frequency

BSG

flux jump frequency increases with temperature

Summary

- B₄C helped achieve a more homogeneous C distribution. Due to higher reactivity of B₄C with Mg and an atomically uniform distribution of C in the bulk microstructure.
- Enhancement in J_c , particularly at lower temperature and higher fields. Generation of lattice disorder in the MgB₂ phase accompanied by the effects of C-doping. Analysis of the pinning force also suggested the possibility of a contribution to enhanced J_c from volume pinning.
- A significant increase in trapped field was observed in C-doped MgB₂ bulk superconductors. The trapped field obtained (4.15 T) is the highest reported to date for MgB₂ bulk superconductors synthesized under ambient pressure conditions
- Finer particle size of B_4C is likely to yield more efficient and uniform Cdoping, without the formation of MgB_2C_2 and leaving residual B_4C . This, together with nano-sized boron powder, would potentially yield an optimum combination of enhanced grain boundary pinning and increased H_{c2} .