

[4M01-06]

New Nb₃Al superconducting wires with Ta-Ni interfilament matrix

Akihiro Kikuchi

National Institute for Material Science (NIMS)

Collaborators: Yasuo lijima, Kazuto Hirata (NIMS)

Kiyosumi Tsuchiya (KEK)

$Nb_3AI : 30 T of B_{c2} (4.2K)$

Nb₃Al: Better Strain Tolerance

Nb₃Al: No Tin Leakage Problem

Courtesy by R. Yamada, E. Barzi, A. Zlobin (FNAL)

Need High Temperature Heat Treatment at 2,000°C for Stoichiometry

NIMS Method (1994) (Rapid Heating/Quenching)

Cu Stabilizer Fabrication

Reel to Reel High Speed Cu electroplating

1 km Long 1 mm diameter Nb₃Al Strand with Cu stabilizer (2006)

1.2 km

Nb interfilament matrix

Good Cold-Drawability, No Wire-Breakage

Magnetic Instability at Low Fields and 4.2 K

(a) Twist Pitch Dependence

(b) Temperature Dependence

No correlation with twist pitch at 4.2 K

Suppressed with increasing temperature

Niobium and Tantalum

		Niobium (Nb)	Tantalum (Ta)
Purity (wt.%)		99.8~99.9	~99.9
Physical Properties	Category of Superconductivity	Type II	Type I
	Critical Temperature, Tc (K)	9.2	4.48
	Critcal Field, Bc (4.2 K) (T)	0.35	0.01
	Melting Point (°C)	2,477	3,017
	Crystal Structure	body-centered cubic	body-centered cubic
	Magnetism	Paramagnetism	Paramagnetism
	Density (g/cm³)	8.57	16.7
	Coefficient of Thermal Expansion (μm/m·K)	7.3	6.3
	Thermal Conductivity (300 K) (W/m·K)	53.7	57.5
ties	Vicker's Hardness, Hv (300 K)	~60	~80
Mechanical Properties	Young's Modulus (300 K) (GPa)	105	186
	Poisson's Ratio (300 K)	0.40	0.34
	Tensile Strength (300 K) (MPa)	~ 180	~ 220
	Elongation (300 K) (%)	~ 25	~ 25

Ta Matrix Nb₃Al Strand (F3)

Ta matrix

Cu/non-Cu ratio = 1.0

222 Subelements

Deff 38 μm

Suppression of Low Field Instability at 4.2 K on Ta matrix Nb₃Al Strand

Magnetic Anomaly in Low Fields at 1.9 K

General Specification and Performance of Ta matrix Nb₃Al strand

Strand Dia. (with Cu)	1.00 mm	
Strand Dia. (w/o Cu)	0.70 mm	
No. of Subelements	222	
No. of Total Subelements	222 + 19	
Physical Filament Dia.	38 μ m	
Cu/Non-Cu ratio	1.0	

I _с (4.2 К, 12 Т)	581.3 A
<i>I</i> _c (4.2 K, 15 T)	343.0 A
non-Cu <i>J</i> _c (4.2 K,12 T)	1,481 A/mm ²
non-Cu <i>J</i> _c (4.2 K,15 T)	874 A/mm²
n value (4.2 K,12T /15 T)	49.9 / 40.3
RRR (20K/300K)	80-170
Low Field Instability (4.2K)	None

Bottleneck for Mass Production

Wire-Breakages always happened from Ta interfilament matrix, when the wire diameter was reduced under 2-3 mm.

Speculations

- Tantalum sheet may have reached its plastic deformation limit in the present precursor drawing.
- The appropriate softy Nickel sheet may help the plastic deformation of rather harder Tantalum sheet.
- Tantalum has large solubility limit of Nickel at high temperature of 2,000°C.
- Tantalum and Nickel sheets can make a Ta-Ni alloy matrix through the RHQ treatment of 2,000°C, as well as making Nb-Al supersaturated solid solution filaments.
- Nickel may degrade the superconductivity of Tantalum, and may separate superconducting filament couppling at 1.9 K in low field.
- Ta-Ni alloy will be a solid solution strengthening alloy, and those matrix probably acts as an additional reinforcement of Nb₃Al strand.

General Ta Matrix Jelly-Rolled Subelement

New Jelly-Rolled Subelement

Multifilamentary Precursor

Outer dia. (w/o Cu): 1.0 mm

JR Filament Dia.: 88 μm

Num. of Filament: 78

Filament/Matrix ratio: 0.8

Central Dummy: Nb

Outermost Matrix: Nb

Interfilament Matrix: Ta/Ni

Wire-Breakage: 1 time

(at φ 2mm)

The Nickel sheet may improve the drawability of Ta matrix precursor, but the wire-breakage still happens a few times. The problem is not completely solved yet. New Tantalum having excellent cold-workability is still required.

Nickel Mapping at Interfilament Matrix

(a) Before RHQ (after drawing) (b) After RHQ of 2,000°C

Mechanically mixed with Ta

Locally reacted with Ta and distributed in a mesh pattern

Hardness of Interfilament Matrix and Jelly-Rolled Filament (Nb-Al Supersaturated Solid Solution)

Hardness of Ta-Ni interfilament matrix and JR filament are well-balanced.

Tensile Test (at R.T.) of 1.0 mm strand after RHQ (Nb-Al Supersaturated Solid Solution)

The maximum tensile strength reaches 1,000 MPa at room temperature. Ta-Ni interfilament matrix acts as an additional reinforcement for the Nb_3Al strand.

Magnetic Instability in Low Fields

Ta-Ni interfilament matrix apparently improves low field instability at low temperatures.

non Cu Jc (4.2 K)

Kramer Extrapolation Bc2 (4.2 K)

Improvement of non Cu Jc

Summary

- Nb₃Al conductor has great potential, such as 30 T of Bc2(4.2 K), excellent strain tolerance and no tin leakage problem.
- Present Tantalum sheet may have reached its plastic deformation limit in the present precursor drawing.
- The Nickel sheet with Tantalum sheet may improve the drawability of Ta matrix precursor, but the wire-breakage still happens a few times.
 The mass production problem is not completely solved yet.
- Ta-Ni interfilament matrix increases the maximum tensile strength and acts as an additional reinforcement for the Nb₃Al strand.
- Nickel degrades the superconductivity of Tantalum and improves low field instability of Nb₃Al strand at low temperatures.
- 1 mm Nb₃Al strands with Ta-Ni interfilament matrix has 1,100 A/mm² of non Cu Jc (4.2 K, 15T) and 26.8 T of Bc2 (4.2 K).

In-House Jelly-Rolled Billet Assembly for 1 km Long Nb₃Al Strand in National Institute for Material Science

Nb₃Al Rutherford Cables

• 27 F3 strands, Keystoned, 87% Compaction

• 27 F4 strands, Rectangular, 86.5 % Compaction

Expanded View of Nb₃Al Rutherford Cable

