

Cose 16 T dipole for FCC

B. CAIFFI

G. BELLOMO, P. FABBRICATORE, S. FARINON, V.MARINOZZI, A.M. RICCI, M. SORBI

Outlook

- Introduction on FCC project
- EuroCirCol within FCC
- Cosθ layout
- Magnetic design
- Mechanical design
- Conclusions and future developments

Future Circular Collider (FCC)

LHC p=7 TeV, L=27 km \rightarrow B=8 T FCC p=50 TeV, L=100 km \rightarrow B=16 T

- Future Circular Collider (FCC) Circumference: 90 -100 km Energy: 100 TeV (pp) 90-350 GeV (e⁺e⁻)
- Large Hadron Collider (LHC) Large Electron-Positron Collider (LEP) Circumference: 27 km Energy: 14 TeV (pp) 209 GeV (e⁺e⁻)

Nb₃Sn brittle after thermal treatment, in particular at room temperature.

EuroCirCol project

Aim: provide a conceptual design for a hadron collider to the FCC project. WP5 will deliver the conceptual design for the 16 T bending dipoles, 50 mm aperture. 3 configurations are currently being studied:

Conductor performance assumption: 2300 A/mm² @1.9 K@ 16 T, RRR=100, d_{strand}^{MAX}=1.2 mm Cu/non CU_{MIN}=0.8:1, Margin 14 %

Cosθ coil layout

n	Constraints for the magnet desig
50 mm	Bore inner diameter
204 mm	Beam distance
Nb₃Sn	Material
16 T	Bore nominal field
1.9 K	Operating temperature
86 %	Operation on the load line
40	Maximum strand number per cable
0.15 mm	Cable insulation thickness
≥ 0.85	Cu/NCu
$\leq 3/10$ units	Field harmonics (geometric/saturation)
300 mm	Yoke outer radius

Magnetic design

	HF Cable (inner)	LF Cable (outer)
Strand number	22	37
Strand diameter	1.1 mm	0.7 mm
Bare width	13.2 mm	13.65mm
Bare inner thickness	1.892 mm	1.204 mm
Bare outer thickness	2.072 mm	1.3231 mm
Insulation	0.15 mm	0.15 mm
Keystone angle	0.5°	0.5°
Cu/NCu	0.9	2.2
Operating current	11230 A	11230 A
Operating point on LL (1.9 K)	86 %	86 %

9/21/2017

Magnetic analysis

High-order harmonics at 16 T						
b2	b3	b5	b7	b9	b11	b13
-48.8	-1.2	-1.0	1.7	1.4	1.0	-0.2

- > All harmonics are within constraints
- > b2 optimization **not yet** performed
- Persistent currents will be evaluated in the next months, together with a more detailed design of the iron yoke

8

Mechanical Constraints

- Stress in the conductor < 150 MPa @ RT
 - < 200 MPa @ 1.9 K
- Stress on mechanical structure < yield strength
- No detachment between coil and pole

MATERIAL	Stress limit [MPa]		E [GPa]		ν	α
	RT	1.9 K	RT	1.9 K		RT→1.9K
Coil	150	200			0.3	
Radial dir			30	33		3.1 10 ⁻³
Azimuthal dir			25	27.5		3.4 10 ⁻³
Austenitic steel	350	1050	193	210	0.28	2.8 10 ⁻³
(316LN)						
AI7075	480	690	70	79	0.3	4.2 10 ⁻³
Ferromagnetic iron	230	720*	213	224	0.28	2.0 10 ⁻³
Ti6Al4V	800	1650	115	126	0.3	1.7 10 ⁻³

Critical Current Measurements of High-*J_c* Nb₃Sn Rutherford Cables under Transverse Compression

B. Bordini, P. Alknes, A. Ballarino, L. Bottura, L. Oberli

Fig. 6. Upper critical field at 4.2 K estimated from the critical current measurements under transversal pressure.

•

Mechanical structures

EUCAS 2017

9/21/2017

ANSYS model

ANSYS model

- Glued contact elements

EUCAS 2017

ANSYS model

Sliding permitted contact elements

ANSYS model

Sliding and detachment permitted contact elements

ANSYS model

- Step 1: insertion of key 1
- Step 2: insertion of key 2 (60 Mpa applied)
- Step 3 insertion of keys 3 and 4 (30 Mpa applied)
- Step 4: cooling down
- Step 5: energization to 16 T (application of Lorentz forces to the conductor elements)

assembly

Deformation x 20

COOL DOWN VM stress[Pa] ASSEMBLY 16T () .222E+08 .444E+08 .667E+08 .889E+08 111E+09133E+09 140 .156E+09 Average Von Mises Stress [MPa] 07 09 09 00 001 001 .178E+09 .200E+09 ---layer1 VM stress far below current degradation ----layer 2 • ---layer 3 limit (150 MPa @ RT -200 MPa @ 1.9K) ---layer 4 Localized hot spot after cooling down • (edge effect, negligible) 0 ASSEMBLY COOLING 16T Calculation Step

ASSEMBLY

MATERIAL	Stress limit [MPa]		
	RT	1.9 K	
Austenitic steel	350	1050	
(316LN)			
AI7075	480	690	
Ferromagnetic iron	230	720	
Ti6Al4V	800	1650	

<VM>=55 MPa (350 MPa)

19

Mechanical analysis

COOL DOWN

MATERIAL	Stress limit [MPa]		
	RT	1.9 K	
Austenitic steel	350	1050	
(316LN)			
AI7075	480	690	
Ferromagnetic iron	230	720	
Ti6Al4V	800	1650	

<VM>=98 MPa (1050 MPa)

ENERGIZATION

MATERIAL	Stress RT	s limit [MPa] 1.9 K
Austenitic steel (316LN)	350	1050
AI7075	480	690
Ferromagnetic iron	230	720
Ti6Al4V	800	1650

<VM>=103 MPa (1050 MPa)

Conclusions

- In the framework of the EuroCirCol project, 16 T dipoles for FCC are being studied. INFN is in charge of the cosθ coil configuration, presented in this contribution in its double aperture (LHC-like) version.
- Extensive mechanical and magnetic analysis leads to a promising configuration, composed by two 4 layers graded coils, inserted in a layered structure (coils < rectangular steel pad < magnetic yoke < aluminum ring). The required pre-stress is given by the «bladder and keys» technique
- Our model, assuming realistic condition on the cable used :
 - fullfils all the mechanical constrains, both the stress level in the conductore and in the support structure and the contact pressure between the coil and the poles;
 - fulfils requirments on margin and peak field and exhibits acceptable quality field
- Considering the maturity of the analysis, INFN in collaboration with CERN is evaluating the possibility to build a demonstrative short model (2 m long).

EUCAS 2017 9/21/2017

Thank you

EUCAS 2017 9/21/2017

Back-up slides

Cable assumption: 1500 A/mm2 @1.9 K @ 16 T RRR=100 d_{strand}^{MAX}=1.2 mm Cu/non CU_{MIN}=0.8:1 Margin 14 %