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LBNL HTS (2212) subscale magnet program 

topped with new RC-05 results
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Subscale coils allow fast-turnaround test of cable and 

magnet-relevant technologies.
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LBNL RC-1,2,5 in FSU OP furnace
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Parameters of LBNL HTS-SC and RC coils show Bi2212 

is now a very relevant high-field conductor
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Ag/Bi-2212 strand

2-layer x 6-turn racetrack coil based on 17-strand 

Rutherford cable (1.44 mm x 7.8 mm, strand 

diameter = 0.8 mm)

140 m conductor, 8 m cable 

18 lbs coil thermal mass, 37 cm x 12 cm x 3.1 cm.

50 bar OPHT (@FSU) for RC coils.

RC-01 (4.8 kA, 80% peak SS Jc, (effective) 

Jcable=430 A/mm2, (effective) wire Je=540 A/mm2.), 

wax impregnation

RC-02 (5.7 kA, 80% peak SS Jc, (effective) 

Jcable=507 A/mm2, (effective) wire Je=644 A/mm2.), 

wax impregnation

RC-05 (8.2 kA, <73% peak SS Jc, (effective) 

Jcable=730 A/mm2, (effective) wire Je=930 A/mm2.), 

CTD101-K impregnation

RC5 – peak field – 3.33 T
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RC5 reached 8.2 kA and were safely protected.

Je,cable=730 A/mm2 and Je,strand=930 A/mm2 (at 3.33 T) are practical 

current densities for applications

19.50 19.55 19.60 19.65 19.70 19.75 19.80 19.85 19.90

-0.10

-0.05

0.00

0.05

0.10

C
o

il
 v

o
lt

a
g

e
 (

V
)

Time (sec)

 V
ete

 V
layer 1

 V
layer 2

16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0

7900

7920

7940

7960

7980

8000

8020

C
u

rr
e

n
t 

I 
(A

)

Time (sec)

dI/dt = 30 A/s

• (Extrapolated to 20 T) Je,cable=408 A/mm2 and Je,strand=529 A/mm2

• Coil was safely protected against quenches.

• A thermal run-off.

~6.3 mV/ms
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RC5 is quite stable against disturbances, 

even at 7800 A => robust against training

• No quench against heater pulses at 1.5 W for 1 s, and 2.5 W for 1 s. 

Finally quenched at 5.3 W for 1 s.

• Heat pulse applied at the turn #1 (straight section, B≈2.5 T).

No 

Quench
No 

Quench

Heat pulses

Quench

Marchevsky 3LO3-03 and future talks –

AE signals of RC5
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RC5 is quite, without signs of internal 

dissipation when dwelling at 7800 A
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RC5 is possible because of advances in powder, wire, cable, and 

OPHT technologies, 
and it also verifies progresses and technological readiness on these fronts.
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nGimat power

LXB-52
Conservative short 

sample JE used.

See Larbalestier, MT25 talk

PMM101111, 36x18, 

Nexans powder

77

PMM130411, 19x36, 

Nexans powder

77

Relevant conductor talk – J. Jiang, 4MO1-03.

DC Larbalestier MT25, Y. Huang 3MP4-02

1 bar HT



Contributors –

RC5 is a product of successful collaboration between U.S 

national lab, university, and industries.

– K. Zhang, H. Higley, A. Lin, L. Garcia Fajardo, J. Taylor,

M. Turqueti, T. Shen
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– E. Bosque, J. Jiang, U.P. Trociewitz, E.E. Hellstrom,

D.C. Larbalestier

– H. Miao, Y. Huang

– M. White, R. Nesbit, A. Xu, A. Hunt

The LBNL RC5 was made from the wire PMM-170123, fabricated by Bruker OST with new Bi-

2212 powder developed by nGimat LLC (DOE SBIR support) and donated to LBNL.



Other crucial aspects of magnet technology

(1) easy joints

Simple lap joints with contact resistance - 12.5 nano-ohm∙cm2
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Other crucial aspects of magnet technology

(2) high RRR with no diffusion barriers
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Cu in filaments diffuses out but 

forms Cu2O on wire surface after reaction
Li, Ye, Jiang, Shen, IOP Conf. Series: Materials 

Science and Engineering 102 (2015) 012027 
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Other crucial aspects of magnet technology

(3) Feasible quench detection using voltage taps and quench 

protection using dump resistor at wire Jo of 910 A/mm2

t=19.895 s, Vete = 0.011 V

t=19.782 s, Voltage taking off.

Vete reached 

10 mV
Voltage 

started 

to rise

𝝙t=0.11 secAdvanced quench detection:

• M. Marchevsky, 3LO3-03, acoustic 

thermometry

• E. Ravaioli, 3LP4-23, capacitance 

measurement

• F. Scurti, 3LO3-05, fiber optics



12

Feasible voltage-based quench detection and quench 

protection at a lower current – wire Jo=600 A/mm2
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Feasible voltage-based quench detection is perhaps because 

quenching doesn’t occur with a single, localized hot spot, 

rather with multiple hot spots with several turns
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Vete reached 

10 mV – normal zones at four turns

RC2 dwelling at 5350 A

Shen et al. Supercond. Sci. Technol. 29 (2016) 08LT01

Vete reached 

100 mV – normal zone in one layer
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Background 

field

(T)

PMM170123 strand (90% SSL 

assumed)

I–Design 

(kA)

Dipole field in the 

bore

(T)

0 9.8 5.4

15 7.0 18.9

Design 1: 19-strand Rutherford cable, 0.8 mm strand, bore=40 mm, OD=98.4 mm

Redefine what is possible: A route to 20 T dipole - Extending 

CCT to 2212 
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Background 

field

(T)

PMM170123 strand (90% SSL 

assumed)

I–Design 

(kA)

Dipole field in the 

bore

(T)

0 7 4.0

15 4.9 17.8

Design 2: 13-strand Rutherford cable, 0.8 mm strand, bore=40 mm, OD=81 mm

L. Garcia Fajardo, L. Brouwer
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CCT technology is effective at managing stresses in Bi-

2212 coils within limits, even at 20 T

L. Garcia Fajardo, L. Brouwer

Pole

mid-

plane

Stress in one-half turn of Bi-2212 cable for design 1 at 18.9 T 



Quadrupled performance in RC5 (3.33 T) – wire Je –

930 A/mm2, cable Je - 730 A/mm2, cable Iq -8200 A, 

stable at 7800 A.

Feasible voltage tap based quench detection.

Redefine what is possible – 20 T dipole with 2212 

CCT technology.
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Key messages – 2212 conductors are ready 

for magnets (D.C. Larbalestier MT-25)


