Radiation Effects in Superconducting Quadrupoles for BigRIPS In-flight Separator at RIKEN

K. Kusaka, M. Ohtake, K. Yoshida, K. Tanaka, H. Mukai, Y. Uwamino, and T. Kubo

Contents

- Introduction (Facility, Magnet)
- Beam(Radiation) Heat load
- Dose Estimate ~1MGy in 9 years
- Impurities in He gas (T, CH₄)
- Excitation voltage & coil movement

"Any indication of degradation of superconducting coil?"

Aimed at making significant progress in the studies of exotic nuclei far from stability

1st STQ (Superconducting Triplet Quadrupoles)

- Air-Core type superconducting triplet Quads
 Triplet in Single Cryostat LHe Bath Cooling
- in the close proximity of the production target
- exposed to very high radiation

Dose accumulated ~ 890 kGy

Operational experiences related to radiation effects

Operation data

STQ1 Superconducting Triplet Quadrupoles

- NbTi superconducting Coils with Cu stabilizer PEI Insulated conductor 1.46 x 2.36 mm 54 filaments with ϕ 175 μ m Cu/super ratio 1.33 Ic [A] 2100A @ 7T

- -Wet winding
- "layer by layer"

-Epoxy Resin with Fillers

- Supported in

most radiation sensitive material

	P1	P2	Р3
Effective length [m]	~ 0.5	~0.8	~0.5
Field Gradient [T/m]	24	20	20
Number of turns	745	1315	1315
Ampere turn [kA]	552	825	825
Nominal current [A]	740	628	628
density [A/ mm ²]	188	159	159
Max field at coil [T]	6.0	6.9	7.0
Tc [K]	6.7	6.3	6.3
lc/lop	3.7	3.5	3.4
Stored energy [MJ]	0.34	1.21	0.81

4K total cold mass ~ 3.5 tons in LHe bath (1000L)

Observed Beam Heat load

- Heat load to STQ1 cryostat caused by radiation
- 1st Observation Dec. 2008 48 Ca²⁰⁺ 345MeV/u + Be 15, 20 mm 10~40 W for 0.5~2.3 μA
- 2010 2014 ¹⁸O⁸⁺ 345MeV/u + Be 60 mm ⁴⁸Ca²⁰⁺ 345MeV/u + Be 10, 15 mm 70 Zn $^{30+}$ 345MeV/u + Be 10 mm ¹²⁴Xe⁵²⁺ 345MeV/u + Be 4 mm ²³⁸U⁸⁶⁺ 345MeV/u + Be 3 mm

Primary beam trajectory

Typical Beam Current $\sim 0.5 \sim 4 \mu A$ Beam Power ~ 7 kW

Observed Heat load 4 ~ 40 W

Comparison with radiation transport calc. by PHITS simulation code

Simulation results agree within factor of \sim 2 In a wide range of mass A = 18 \sim 238

Cryogenic Control Continuous & constant He-flow Cryo-control system before 2015 LHe level is kept constant (~87%) **Level Sensor** Worked well by varying heater power with fluctuation of < 50W P **Heater Control** Beam 10 % of cooling capacity Heat load LHe level Power Liq. He (fluctuation) Heat load is evaluated Increased > 87.1% Heater by comparing ave. heater powers Decreased < 87.0% Dec. 2014

Intense 48 Ca Beam (8 μ A, 6.6 kW) + Thick Target (20 mm) Dec. 2014 Large Beam Heat load 80 W > 15% of Cooling Capacity

Too large heat load fluctuation

Rapid increase of cold return gas makes Cryogenic system unstable

Introduce "beam load heater"

Beam Heat load with Upgraded Beam Intensity

Observed max beam heat load of 170 W (48 Ca with 20 μ A + 20 mm Be target) in 2016 1/3 of cooling capacity

Dose Estimate

Beam	Target Thickness (mm)	Heat deposit density (mW/cc)
¹⁸ O ⁸⁺	20	0.45
⁴⁸ Ca ²⁰⁺	30	3.5
⁷⁰ Zn ³⁰⁺	12	3.5
⁷⁸ Kr ³⁶⁺	7	2.0
²³⁸ U ⁸⁶⁺	4	20

per 1 p μ A

Operation Record

Season	Beam	Target Thickness (mm)	Integrated Current (p μA day)	Dose (kGy)
	²³⁸ U ⁸⁶⁺	1, 3, 4, 7	0.3	43
	⁷⁰ Zn ³⁰⁺	5, 8, 10, 12, 17	1.1	33
2014 4Q	238U86+	4, 5, 6, 7	0.1	30
	⁴⁸ Ca ²⁰⁺	12, 15, 20, 30	3.8	85
2015 2Q	²³⁸ U ⁸⁶⁺	1, 3, 4, 5	0.3	44
	⁷⁸ Kr ³⁶⁺	7, 10	3.4	83
2015	²³⁸ U ⁸⁶⁺	2, 5, 7	0.2	60
	⁴⁸ Ca ²⁰⁺	15, 20	2.9	62
2010	²³⁸ U ⁸⁶⁺	2, 4, 5, 7	0.4	77
	¹⁸ O ⁸⁺	15, 20	3.9	15
2010	²³⁸ U ⁸⁶⁺	4, 7, 10	0.2	49
	⁴⁸ Ca ²⁰⁺	15, 20	6.8	172

Observed Impurities in He gas form STQ1 cryostat

- Tritium(T) 4 He(n,d)T (E_{th} =22MeV) reaction in LHe bath Radioactivity in vent gas from STQ1 cryostat at warm-up monitored by Gas-monitor ALOKA MGR-133
- Hydrocarbon (CH₄) Dissociation of epoxy ?

CH₄ concentration in He gas at discharge line of compressor by Gas Chromatograph Observed when start circulating He gas in STQ1 cryostat at pre-cooling or purification

Quench Records & Accumulated Dose

5 quenches: P2, SX, P3 coils P1 coil never quenched

P2 @ 616, 625A (training quench)

All of them are due to thermal cycle

Excitation voltage of P2 quench ramp

Oct. 15 2014 (~200kGy) First ramp after pre-cooling Stepwise ramp-up with ramp rate 0.4A/s Quench @ 624A 100A step (<600A), 10A step (>600A) Operation log data (max 628A) Analog monitor output of PS Sampling speed of 125msec 700 10 600 8 500 V 6 Current [A] 400 Voltage [V] 300 200 0 100

11:15 AM

11:00 AM

10:45 AM

11:30 AM

11:45 AM

0:00 PM

Spikes in excitation voltage

Spikes in excitation voltage @ 90A

Spikes in excitation voltage

Spikes disappeared in 2nd ramp-up

Coil movement due to thermal cycle

Can we see difference between ramps in different accumulated dose periods?

Comparison of different ramps

V vs I plot of 1st P2 ramp-up after pre-cooling

Slope: Voltage drop due to DC cables

Intercept: inductance of P2 coil (ramp speed 0.4 A/s)

No distinct difference between different ramps (different dose)

Smaller disturbance may be detected with faster logging system

No signal of degradation

Summary

- Beam Heat load to Cryostat
 Evaluated by heater power analysis of operation data of BigRIPS cryogenic system
 PHITS simulation results agree within a factor of 2
- Dose Estimate
 Operation records (beam current) & Local heat deposit estimated by PHITS simulation
 Accumulated dose of STQ1 coil : order of 1 MGy (890kGy)
- Excitation voltage as coil motion
 No distinct difference between different ramps (different dose)
 No signal of degradation
- Impurities in He gas from cryostat
 Tritium and CH₄ in STQ1 cryostat increase, as the dose increases

