YNU Initiative for Global Arts & Sciences YOKOHAMA National University

13th European Conference on Applied Superconductivity, Geneva, 17-21 September 2017

Recent research developments of adiabatic quantum-flux-parametron circuits technology toward energy-efficient high-performance computing

N. Yoshikawa^{1,2}, N. Takeuchi², C.L. Ayala², Q. Xu², K. Fang¹, N. Tsuji¹,

F. China¹, Y. Murai¹, T. Ortlepp^{2,3}, Y. Yamanashi^{1,2} ¹Department of Electrical and Computer Engineering, Yokohama National University, Japan ²Institute of Advanced Sciences, Yokohama National University, Japan

³The CiS Research Institute for Microsensor Systems GmbH, Germany

The circuit was fabricated using ISTEC standard process (STP2). National Institute of Advanced Industrial Science and Technology partially contributed to the circuit fabrication.

Outline

- Background and motivation
- Operation principle of adiabatic quantum flux parametron (AQFP)
- AQFP as an energy-efficient logic circuit
 - Evaluation of AQFP as a logic circuit
- Design methodology of AQFP logic circuits
- EDA tools for Top-Down design
- Summary

Background

Estimated power consumption to realize an exa-scale computer

~ \$million/100 MW per year

K computer (Japan)

Peak performance: 10.5 PFLOPS Power consumption: 12.6 MW

1st-ranked computers in recent TOP500

http://www.top500.org/

Low-Power Logic Devices is highly demanded.

Energy-Efficient SFQ Circuits

Comparison of Energy-Delay Product

Adiabatic Quantum-Flux-Parametron (AQFP)

AQFP gate

An SFQ is stored in the right or left loop depending on I_{in} .

Operation principle is based on QFP gates.

M. Hosoya et al., IEEE Trans. Appl. Supercond. 1, 77–89 (1991).

Potential energy of the gate

6

Potential energy changes adiabatically during switching.

Adiabatic Quantum-Flux-Parametron (AQFP)

AQFP gate

*I*_{out} flows downward.

Potential energy of the gate

7

Potential energy changes adiabatically during switching.

Operation principle is based on QFP gates.

M. Hosoya et al., IEEE Trans. Appl. Supercond. 1, 77-89 (1991).

Adiabatic Quantum-Flux-Parametron (AQFP)

AQFP gate

*I*_{out} flows upward.

Potential energy of the gate

8

Potential energy changes adiabatically during switching.

Operation principle is based on QFP gates.

M. Hosoya et al., IEEE Trans. Appl. Supercond. 1, 77–89 (1991).

Evolution of Junction Phase at 4.2 K

Bit Energy vs. Clock Period of AQFP

When rise time is 1000 ps, $E_{\text{bit}} = 0.023 I_{\text{c}} \Phi_0$ (~ $20k_{\text{B}}T$). \rightarrow 1/1000 of RSFQ

N. Takeuchi, et. al., SUST, 26, 035010 (2013).

Bit Energy Measurement of AQFP using a Superconducting Resonator

Measured power consumption of AQFP

11

AIST Nb Josephson standard process (STP2) was used.

N. Takeuchi, et. al., Appl. Phys. Lett., 102, 052602 (2013).

Comparison of Superconducting Logics

Logic	Clock Freq. [GHz]	$E_{bit}/I_{c}\Phi_{0}$	Typical I _c [mA]	EDP [aJ·ps]
CMOS	4	-	-	~10 ⁵
RSFQ [1]	50	19	150	120
eSFQ [2]	20	0.8	150	12
RQL [3]	10	0.33	150	10
LV-RSFQ [4]	20	3.5	150	54
AQFP [5]	5	0.0083	50	0.086
Quantum limit	-	-	-	5.3×10 ⁻⁵

[1] X. Peng et al., IEICE Trans. Electron. **E97.C**, 188 (2014).

[2] M. H. Volkmann et al., Supercond. Sci. Technol. 26, 015002 (2013).

[3] Q. P. Herr et al., J. Appl. Phys. 109, 103903 (2011).

[4] M. Tanaka et al., IEEE Trans. Appl. Supercond. 23, 1701104 (2013).

[5] N. Takeuchi et al., Supercond. Sci. Technol. 28, 015003 (2015).

Important metrics as a logic circuit

- Gain
- Functionality
- Speed
- Energy consumption
- Driving ability
- Connectability
- Error rates
- Robustness
- Density

Gain

Current gain of AQFP is considerably large.

Current gain vs. input current at T = 0K

N. Takeuchi, et. al., SUST, 26, 035010 (2013).

If we assume $\delta I_{in} \sim 1 \mu A$, and $I_c = 50 \mu A$, the current gain is given by $I_c / \delta I_{in} \sim 50$. δI_{in} : input thermal noise

cf. In RSFQ circuits with $I_{in} \sim 20 \ \mu$ A, $I_{c} = 100 \ \mu$ A, the current gain is ~ 5.

Functionality

- NOT gate is cost free.
- Majority gate is a basic logic gate.

NOT gate is made by using a transformer with negative coupling.

K. Inoue, et al. IEEE Trans. Appl. Supercond., 23, 1301105 (2013).

 $x = \mathbf{MAJ}(a,$

Majority gate is made by connecting three buffer in parallel.

x = MAJ(a, b, c) = ab + bc + ac

- AQFP is driven by multi-phase clocks. (4-phase is typically used.)
- Target clock frequency is 5 GHz.
- Double excitation method can increases the clock frequency [1].
- Latency is improved by increasing the number of phase.

Clocking of AQFP gates

[1] K. Fang, J. Appl. Phys., **121**, 143901 (2017).

Energy Consumption

- The static energy consumption is zero, the dynamic energy consumption is proportional to the clock frequency.
- The energy consumption is decreased by using high-J_c and high-β_c junctions.

Bit energy:

$$E_{bit} = 2I_c \Phi_0 \frac{\tau_{sw}}{\tau_{rf}}$$

Intrinsic switching time:

$$\tau_{sw} \approx \frac{\Phi_0}{I_c R} = \sqrt{\frac{2\pi \Phi_0 c}{\beta_c j_c}}$$

Driving Ability

■ Fan-out of AQFP gate is large (4 ~ 16).

1:8 splitter

(cf. Fan-out of RSFQ circuits: 2 ~ 3.)

AIST Nb Josephson standard process (STP2) was used.

Connectability

- The output current of AQFP gate decreases with increase of interconnect inductance, which limits the wire length.
- L_{max} ~ 1 mm.

Testing of maximum wiring length

N. Takeuchi et al., J. Appl. Phys. 117, 173912 (2015). YNU YOKOHAMA National University

Error Rates

Bit-error-rate of AQFP gate is quite small when $E_{\perp} >> k_{B}T$.

N. Takeuchi, et al., Appl. Phys. Lett., 110, 202601 (2017).

Robustness

Demonstrated 84k-Junction AQFP buffer array

- chuchu	h.ch.ch.	Auchuch.
		-
1mm	 	料用料用

- AQFP is robust because
 - The operation is based on differential pairs of junctions and inductances.
 - The critical current of all junctions is the same.

Area	$6.68 \times 6.23 \text{ mm}^2$
Bias Current	3.60 mA
JJ number	83736

AIST 10 kA/cm² high-speed standard process (HSTP) was used.

Density

Multi-layer processes improve the circuit density.

Design Methodology

 Logic cells can be designed by placing four building blocks: Buffer, NOT, Constant, Branch

N. Takeuchi et al., J. Appl. Phys. 117, 173912 (2015).

Layout of Basic Cells

 Symmetric design prevents the parasitic coupling between the excitation and output inductance

Building block cells

Majority cell

N. Takeuchi et al., J. Appl. Phys. 117, 173912 (2015).

24

AQFP Logic Design

- Logic cells are placed together like Lego blocks
- Logic gates grouped by phase & data flow

Demonstrated AQFP Circuits

8-bit carry look-ahead adder

C. L. Ayala et al., IEEE Trans. Appl. Supercond., 27 (2017).

N. Tsuji et al., IEEE Trans. Appl. Supercond., 27 (2017).

4-bit AQFP RISC Microarchitecture

EUCAS2017, 1EP1-6, 1EP1-12

*overlapped with pipeline

EDA Tools for Top-Down Design

Qiuyun Xu, et al., IEEE Trans. Appl. Supercond., 27, 1301905, (2017).

AQFP Circuit Design using EDA Tools

Layout of 16-b AQFP carry-look-ahead adder

Y. Murai, et al., IEEE Trans. Appl. Supercond., 27, 1302209 (2017).

Future Directions

- Investigation of design methodology and EDA tools for large-scale AQFP integrated circuits
 - Wire-length limitation
 - Multi-phase clock distribution
 - Majority-based logic synthesis
 - Microprocessor architecture
- More energy efficient logic
 - Use reversible QFP (RQFP) circuits [1].
- New applications
 - Control and readout circuits for Quantum computers.
 - Read out circuits for superconducting sensor arrays

[1] N. Takeuchi, et al. Scientific Reports, 4, 6354 (2014).

Summary

- Adiabatic quantum flux parametron (AQFP) is extremely energy efficient logic.
 - ~1 zJ/bit @5 GHz
 - Three orders of magnitude smaller than energy-efficient SFQ logic
 - Six orders of magnitude smaller than CMOS logic
- AQFP has excellent properties as a logic circuit in terms of gain, functionality, speed, energy consumption, driving ability, error rates, robustness, and density.
- AQFP microprocessors are under development based on CMOS-like design methodology and top-down EDA tools.

Thank you for your attention.

BACK UP

YNU YOKOHAMA National University

33

Energy and Speed of AQFP Logic

N. Takeuchi et al., Supercond. Sci. Technol. 28, 015003 (2015).