

Superconductor Electronics Fabrication Process with MoN_x Kinetic Inductors and Self-Shunted Josephson Junctions

Sergey K. Tolpygo, Vladimir Bolkhovsky, Daniel E. Oates, Ravi Rastogi, Scott Zarr, Alexandra L. Day, Terence J. Weir, Alex Wynn, and Leonard M. Johnson

21 September 2017

Outline

- Introduction
 - MIT LL superconductor electronics fabrication
 - Current SFQ5ee process node
 - Benchmark circuits at 10⁶ JJ scale
- Very Large Scale Integration (VLSI) and scaling limiters
 - Resistively shunted junctions
 - Geometrical (magnetic) inductors
- Process development directions
 - Self-shunted high- J_c junctions
 - Kinetic inductors
 - Linewidth reduction to 250 nm and below
- Conclusion

Superconducting Electronics Scaling Trend

- JJ count number of JJs in demonstrated circuits is a good metric of progress
- MIT LL/Stony Brook U. circuits with 810k resistively shunted Josephson junctions and JJ density of 1.33·10⁶ cm⁻² is the current World Record
- 80x increase in integration scale during four years demonstrated
- The maximum JJ density in the current technology nodes is ~ 3×10⁶ JJs/cm²
- New technology developments are required to go beyond 10M JJs

MIT LL technology enables very large scale integration of superconducting circuits

MIT LL Microelectronics Laboratory SCE Foundry

SCE Fab Leverages Facilities and Toolset of 90-nm CMOS Foundry in Microelectronics Lab

- Photolithography
 - 248-nm stepper (Canon) current process nodes
 - 193-nm scanner (ASML) for future nodes
- Photoresist processing and wafer cleaning tools
- Metal and dielectric deposition and etching tools
- Chemical-mechanical polishing
- Metrology tools: SEMs; film thickness, resistivity, and film stress mapping tools, etc.

Dedicated Tools Added to Enhance 200-mm SCE Fab Processing and Capabilities

- Sputter deposition tools for Nb, Mo, MoN_x, NbTiN_x
- High-density plasma (HDP) metal and dielectric etchers
- Low-temperature dielectric deposition tools
 - HDP gap fill and interlayer dielectric deposition
 - PECVD dielectric
- KLA-Tencor Altair defect inspection tool

MIT LL Current Technology Node SFQ5ee

Process Features

Junctions: Nb/AlO_x-Al/Nb; J_c = 0.1 and 0.2 mA/μm²

Min JJ size: 700 nm

Superconducting layers: 9

8 niobium wiring layers

1 layer of MoN_x (kinetic inductors)

Resistors: 2 Ω/sq or 6 Ω/sq

Min wiring linewidth: 350 nm

- AC-biased shift register: 202,280 bits
- 809,120 resistively shunted 1.25-µm² Josephson junctions – World record in JJ count
- Over 4 million inductors
- Fully operational; margins of all bit cells measured
- Integration scale: ≈ Intel's Pentium II, 0.8-µm process,
 3.1M transistors on 294 mm² chip

SFQ6ee Process Node (1st Run Completed in Aug. 2017)

10 superconducting layers: 9 niobium + 1 MoN_x (kinetic inductors) Pairs of stacked vias; smaller linewidth, surround, and spacing

SFQ Circuit Density Limiters: Junctions

- The maximum circuit density is currently determined by the area of resistively shunted Nb/AlO_x-Al/Nb Josephson junctions (RSJ) and inductors
 - Resistor area: $A_R \sim (R_s/R_{sq})F^2 + 27F^2$, where F is the minimum feature size
 - Inductor area: $A_L = 2F(L/\ell) + 18F^2$, where ℓ is inductance per unit length
- Implementing self-shunted (high- J_c) junctions can increase JJ density by ~ 2× over the current 350-nm technology node with RSJs and by ~4× in 250-nm node
- Technology node with two layers of Josephson junctions has been developed at MIT LL

Resistively shunted junction

Shift Register Bit: 17 µm x 40 µm = 680 µm² in Gen 1

Gen 2

15 μ m x 20 μ m = 300 μ m²

Gen 3

Self-shunted JJs with J_c = 0.5 mA/ μ m² 10 μ m x 15 μ m = 150 μ m² Linewidth: 350 nm

Density: 2.7×10⁶ JJ/cm²

MIT LL Process With Two Layers of Junctions

Process SE1

- Two layers of Nb/AlO_x-Al/Nb junctions (J5 and J6)
- Two layers of shunt resistors (R4 and R6): 2 Ω/sq and/or 6 Ω/sq
- Five planarized Nb layers
- First wafer lot completed in Sept. 2017
- Plan to add more Nb layers and bias kinetic inductors
- Provides 2x increase in circuit density

SFQ Circuit Density Limiters: Junctions and Inductors

- Each JJ needs an inductor $L \sim \frac{\beta_L \Phi_0}{2\pi I_c}$, where $\beta_L \sim$
 - 2 3 is the cell design parameter
 - Inductor area $A_{L} = 2F(L/\ell) + 18F^{2}$, where ℓ is inductance per unit length, $\ell < 1$ pH/ μ m
 - Max circuit density is achieved when inductor density matches JJ density, $n_L \sim n_{JJ}$
 - Two or three layers of inductors can be used
 - Limits on minimum spacing and # of layers due to cross talk
- With self-shunted JJs, max circuit density becomes limited by the area of cell inductors
- Solution: replace geometrical (magnetic) inductors with low ℓ by compact kinetic inductors with L_¬~ 4 pH/sq
- Implementation of self-shunted JJs and kinetic inductors can increase circuit density by more than 10x over the current 350-nm technology node

F – minimum feature size I_c range of JJs used: 0.05 mA to 0.25 mA Most often used: I_c ~ 0.125 mA

Process Development Directions

- Reduction of the linewidth to 250 nm and below
 - Nb and NbTiN wiring
 - Mo and MoN_x resistors
- Kinetic inductors
 - MoN_x and NbTiN
- Self-shunted high-J_c junctions
 - Nb/AlO_x-Al/Nb
 - Nb/Si:Nb/Nb
- Multiple (two) layers of junctions
- Stud vias and Damascene process
 - Etched Nb pillars
 - PECVD and PEALD: NbN_x, NbTiN_x, MoN_x
- Investigation of defects, circuit yield, and defect reduction

Process Cross Section

Process SE2: 1 layer of self-shunted JJs, 1 or 2 layers of kinetic inductors, six Nb layers, 1 layers of resistors

Target Process Cross Section

2 layer of self-shunted JJs, eight Nb layers, 2 layers of kinetic inductors, 1 layer of resistor (or bias inductors)

Self-Shunted High-J_c Junctions

- At $J_c \approx 0.6 \text{ mA/}\mu\text{m}^2$, Nb/AlO_x-Al/Nb tunnel junctions become self-shunted
 - $-V_c \sim 1.6 \text{ mV}$
 - $-\beta_c \sim 2$
 - 1σ_{Ic} ~ 5% for 0.5-μm dia JJs (I_c ≈ 85 μA) needs improvement
- Self-shunted Nb/Si_{1-x}Nb_x/Nb junctions, x = 0.1
 - $V_c = 0.2$ mV, a factor of 8 lower max clock frequency
 - $-\beta_{\rm c}\sim 1$
 - No advantages over the tunnel junctions found so far

On-wafer distribution of 0.7-µm JJs

$$J_{\rm c} = 0.1 \text{ mA/}\mu\text{m}^2$$
; $1\sigma = 2.3\%$

 $J_c = 0.5 \text{ mA/}\mu\text{m}^2$; $1\sigma = 5.3\%$

Fabrication and Properties of MoN_x Films

Amorphous MoN_x films

- Highest $T_c \sim 8 \text{ K}$
- Optimal composition for inductors $x \approx 0.33$
- $J_c = 4.10^6 \text{ A cm}^{-2}$
- Reactive sputtering of Mo in N₂/Ar
 - Room-*T* deposition
 - 200 mm wafers
 - Thickness uniformity $1\sigma = 2\%$
 - Optimum resistivity 110 μΩ cm
- Ti/MoN_x/Ti inductors
 - London penetration depth at 4.2 K: 510 nm
 - Sheet inductance: 8 pH/sq at 40 nm
 - On-wafer uniformity $1\sigma = 2.7\%$
 - Wafer-to-wafer inductance variation 1σ = 4%
 - Kinetic inductor flux storage per unit length:

 $LI_c \approx 4.4\Phi_0/\mu m$

London Penetration Depth and Kinetic Inductance of MoN_x Films

Measurement Techniques

- Sapphire dielectric resonator technique
 - $f_{\rm r} = 9.7 \, {\rm GHz}$
 - Q > 30,000

$$f_r(T)/f_r(4.2K) = 1 - 2g \cdot [\lambda_{\text{eff}}(T) - \lambda_{\text{eff}}(4.2K)]$$

$$\lambda_{\rm eff} = \lambda \coth(d/\lambda)$$

$$\lambda(T) = \lambda_0/[1 - (T/T_c)^4]^{1/2}$$

- dc-SQUIDs with patterned MoN_x inductors
 - Sheet inductance from the modulation period
 - Inductor widths from 0.5 μm to 2 μm
 - Inverted microstrip and unshielded strips
 - Multiple SQUIDs per chip can be measured

Results on λ_L and Kinetic Inductance of MoN_x Films

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

• Critical current $I_c \sim 1/L_k$ $I_{GL}L_k = \Phi_0 w/(3\sqrt{3}\xi)$

- In thin MoN_{0.33} films, $L_k I_c / w$ product is ≈ 9.1 pH·mA/μm or 4.4Φ₀/μm

250-nm Nb and NbTiN Inductors and MoN_x Resistors

- 250-nm Nb wiring
 - On-wafer uniformity $1\sigma = 3.9\%$
 - Wafer-to-wafer variation $1\sigma = 4.2\%$
 - $I_c = 25 \text{ mA}$
- 250-nm NbTiN (reactive sputtering)
 - $T_c = 14.5 \text{ K}$
 - I_c ≈ 3.5 mA (needs improvement)
 - $J_c = 9.5 \times 10^6 \text{ A/cm}^2 (95 \text{ mA/}\mu\text{m}^2)$
- 250-nm Ti/MoN_x/Ti resistors
 - Thickness 40 nm for 6 Ω /sq
 - On-wafer uniformity $1\sigma = 2.7\%$
 - Wafer-to-wafer variation $1\sigma = 2.6\%$
- PEALD NbTiN for 250-nm via Damascene process
 - $T_{c} = 9.7 \text{ K}$
 - $J_c = 2 \times 10^5 \text{ A/cm}^2$ (needs improvement)

SEM images of the etched features with 250-nm width and 250-nm spacing. Note difference in surface roughness of NbTiN.

Summary

- We have made substantial progress breaking into VLSI and demonstrating SFQ circuits with ~ 1M JJs
- Superconductor electronics fabrication requires further innovations to grow the integration scale
- We have implemented high- J_c self-shunted Nb/AlO_x-Al/Nb junctions ($J_c = 0.6$ -mA/ μ m²)
- We have developed and implemented in the fab processes
 - Two layers of Josephson junctions
 - 250-nm Nb wiring
 - MoN_x kinetic inductors
 - 250-nm features Mo and MoN_x resistors
- We continue working on
 - Process with two JJ layers: different J_c s
 - Investigation of Nb:Si barrier junctions
 - Full integration of kinetic inductors into SFQ logic/memory cells
 - CVD-filled interlayer vias
 - Defect reduction and circuit yield improvements

Thank you very much for your attention

Questions?

Process Cross Section (v. 1)

1 layer of self-shunted JJs, six Nb layers, 1 layer of kinetic inductors, 1 layer of resistor (or bias inductors)

Beyond CMOS Technologies

Superconducting electronics based on Josephson junctions has demonstrated the lowest energy per operation (~ 10⁻²² J), the highest clock speeds (up to 770 GHz), and is more mature than other beyond-CMOS technologies

MIT LL Superconducting Electronics Fabrication

4-layer node SFQ3ee, 2012

Wafer size: 200 mm

Number of Nb layers: 4

Resistors: Pt, 2 Ω/sq, lift-off

Min JJ size: 700 nm

Min wiring size: 700 nm

Min spacing: 1000 nm

8-layer node SFQ4ee, 2014

Wafer size: 200 mm

Number of Nb layers: 8

Resistors: Mo, 2 Ω/sq, etched

Min JJ size: 700 nm

Min wiring size: 500 nm

Min spacing: 700 nm